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What you will learn today

You will learn . . .

• to recognize bilevel optimization models in real-world applications,

• to properly model these real-world applications using the toolbox of bilevel optimization,

• about the surprising (and mostly challenging) properties of bilevel problems,

• how to reformulate bilevel problems as “ordinary” single-level problems,

• about the obstacles and pitfalls of these single-level reformulations,

• about structural properties of linear bilevel problems,

• how to solve linear bilevel problems,

• about structural properties of mixed-integer linear bilevel problems,

• how to solve mixed-integer linear bilevel problems.

Have fun!
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There should be no crying in this compact course!
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I will teach principles, not formulas!

You will not remember the last ε,

but I hope you remember the core ideas!
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A little advertising

Martin Schmidt, Yasmine Beck:

A Gentle and Incomplete Introduction to Bilevel Optimization

http://www.optimization-online.org/DB_FILE/2021/06/8450.pdf
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Overview

1. Introduction

2. Solution Concepts

3. Single-Level Reformulations

4. Some Theory on Linear Bilevel Problems

5. Algorithms for Linear Bilevel Problems

6. Mixed-Integer Linear Bilevel Problems

7. Outlook
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1. Introduction: Overview

1. Introduction

1.1 What is this about?

1.2 A bit more formal, please

1.3 Some examples revisited

1.4 Why is bilevel optimization difficult?

1.5 Complexity results
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“Usual” single-level problems

min
x∈Rn

f (x)

s.t. g(x) ≥ 0

h(x) = 0

• only one objective function f

• one vector of variables x

• one set of constraints g and h

This models a situation in which a single decision maker takes all decisions,

i.e., decides on the variables of the problem.

• Very often, that’s appropriate:

• a single dispatcher controls a gas transport network

• a single investment banker decides on the assets in a portfolio

• a single logistics company decides on its supply chain
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Often, life’s different

• Many situations in our day-to-day life are different

• Often:

• A decision maker makes a decision . . .

• . . . while anticipating the (rational, i.e., optimal) reaction of another decision maker.

• The decision of the other decision maker depends on the first decision.

• Thus: the outcome (or in more mathematical terms, our objective function and/or feasible set)

depends on the reaction of the other decision maker

Formalizing this situation leads to hierarchical or bilevel optimization problems.
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Informal example #1: pricing

• One of the richest class of applications of bilevel optimization

• First decision maker (leader)

• decides on a price of a certain good

• (or maybe on different prices for multiple goods)

• goal: maximize revenue from selling these goods

• Second decision maker (follower)

• decides on purchasing the goods of the leader to generate some utility

Thus, . . .

• the leader’s decision depends on the optimal reaction of the follower

• the decision of the follower depends on the (pricing) decisions of the leader
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Informal example #2: toll setting

• Imagine a transportation network

• Example: the German highway network

• Some drivers want to reach their destination, starting from their origin

• The objective of these drivers is to travel from their origin to their destination at minimum costs

• Costs can be travel time, toll costs, or a combination of both

• Toll setting agency decides on the tolls imposed on certain parts of the highway system

• Goal of the leader: maximize the revenues based on the tolls

• Goal of the followers: minimize their traveling costs
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Informal example #2: toll setting

As before . . .

• the leader anticipates the optimal reaction of the followers

• the followers’ decisions obviously depend on the decision of the leader

. . . but: one vs. multiple followers

• Pricing example: one follower

• single-leader single-follower game

• Toll setting example: multiple followers

• single-leader multi-follower game
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Informal example #3: energy markets

• Energy sector: another very rich class of applications for bilevel optimization

• Especially the sub-field of energy market modeling

• In many countries of the world, electricity is traded via auctions at an energy exchange

• Auction rules determine the way of trading

• Usually decided on by the state government or some regulatory authority (leader)

• Aim: obtain market outcomes that are optimal in terms of social welfare

• Depending on these rules, producers, and consumers (follower) trade electricity at the exchange

As before . . .

• decision of the leader depends on the anticipation of the followers’ decisions

• the firms’ decisions depend on the market regime, i.e., on the decision of the leader.
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The European Energy Exchange (EEX)

https://www.eex.com/en

Leipzig, Germany
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Informal example #4: interdiction problems

• Important example in discrete bilevel optimization

• Leader is an interdictor that interdicts certain resources of the follower

so that they cannot be used anymore by the follower

• Often defined on graphs

• Example: shortest path

• Follower wants to find a shortest path in a graph from an origin to a destination

• Leader (interdictor) can interdict some of the arcs in the graph

so that they cannot be part of a feasible path of the follower

• Number of interdicted arcs is constrained by an interdiction budget of the leader

• Applications: vulnerability analysis of networks

• Supply chains, transportation, . . .
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A bit more formal, please

Definition (Bilevel optimization problem)

A bilevel optimization problem is given by

min
x∈X , y

F (x , y)

s.t. G(x , y) ≥ 0,

y ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.
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A bit more formal, please . . . continued

min
x∈X , y

F (x , y)

s.t. G(x , y) ≥ 0

y ∈ S(x)

. . . and . . .

S(x) = arg min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0

Wording

• First problem: the so-called upper-level

(or the leader’s) problem

• Second Problem is the so-called

lower-level (or the follower’s) problem

• The leader’s problem is parameterized by

the leader’s decision x

• x ∈ Rnx : upper-level variables

• decisions of the leader

• y ∈ Rny : lower-level variables

• decisions of the follower(s)
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A bit more formal, please . . . continued

min
x∈X , y

F (x , y)

s.t. G(x , y) ≥ 0

y ∈ S(x)

. . . and . . .

S(x) = arg min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0

Functions and dimensions

• Objective functions

• F , f : Rnx × Rny → R
• Constraint functions

• G : Rnx × Rny → Rm

• g : Rnx × Rny → R`
• The sets X ⊆ Rnx and Y ⊆ Rny are

typically used to denote integrality

constraints.

• Example: Y = Zny makes the

lower-level problem an integer program
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A bit more formal, please . . . continued

min
x∈X , y

F (x , y)

s.t. G(x , y) ≥ 0

y ∈ S(x)

. . . and . . .

S(x) = arg min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0

Definition

1. We call upper-level constraints

Gi (x , y) ≥ 0, i ∈ {1, . . . ,m}, coupling

constraints if they explicitly depend on

the lower-level variable vector y .

2. All upper-level variables that appear in

the lower-level constraints are called

linking variables.
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Optimal value function

reformulation

Instead of using the point-to-set mapping S . . .

one can also use the so-called optimal value function

ϕ(x) := min
y∈Y
{f (x , y) : g(x , y) ≥ 0}

and re-write the bilevel problem as

min
x∈X ,y∈Y

F (x , y)

s.t. G(x , y) ≥ 0, g(x , y) ≥ 0

f (x , y) ≤ ϕ(x)
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Shared constraint set

Definition

The set

Ω := {(x , y) ∈ X × Y : G(x , y) ≥ 0, g(x , y) ≥ 0}

is called the shared constraint set.

Its projection onto the x-space is denoted by

Ωx := {x : ∃y with (x , y) ∈ Ω} .
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Bilevel feasible set, inducible region

Definition

The set

F := {(x , y) : (x , y) ∈ Ω, y ∈ S(x)}

is called the bilevel feasible set or inducible region.
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High-point relaxation

Definition

The problem of minimizing the upper-level objective function over the shared constraint set, i.e.,

min
x,y

F (x , y)

s.t. (x , y) ∈ Ω,

is called the high-point relaxation (HPR) of the bilevel problem.

Remark

• The high-point relaxation is identical to the original bilevel problem except for the

constraint y ∈ S(x), i.e., except for the lower-level optimality.

• Thus, it is indeed a relaxation.
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Pricing revisited

• First bilevel pricing problem with linear constraints, linear upper-level objective and bilinear

lower-level objective: Bialas and Karwan (1984)

• Here: a more general version taken from Labbé, Marcotte, and Gilles Savard (1998)

max
x,y=(y1,y2)

x>y1

s.t. Ax ≤ a,

y ∈ arg min
ȳ

{
(x + d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 + D2ȳ2 ≥ b

}
.
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• Vector y of lower-level variables is partitioned into two sub-vectors y1 and y2, called plans, that

specify the levels of some activities such as purchasing goods or services

• Upper-level player influences the activities from plan y1 through the price vector x that is

additionally imposed onto y1

• Goal of the leader is to maximize her revenue given by x>y1

• Price vector x is subject to linear constraints that may, among others, impose lower and upper

bounds on the prices
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.

• The vectors d1 and d2 represent linear disutilities faced by the lower-level player when executing

the activity plans y1 as well as y2

• d2 may also encompass the price for executing the activities not influenced by the leader

• These activities may, e.g., be substitutes offered by competitors for which prices are known and fixed

• The lower-level player determines his activity plans y1 and y2 to minimize the sum of total

disutility and the price paid for plan y1 subject to linear constraints

• To avoid the situation in which the leader would maximize her profit by setting prices to infinity

for these activities y1 that are essential, one may assume that the set {y2 : D2y2 ≥ b} is non-empty
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Interdiction problems revisited: knapsack interdiction

• Problem formulation taken from Caprara et al. (2016)

• Follower owns a knapsack

• She fills the knapsack with items from a set of items [n] := {1, . . . , n}.

• pi : corresponding profit

• wi : item’s weights for the follower

• Leader’s aim: minimize the follower’s maximum profit by prohibiting the usage of certain items by

the follower (at costs vi )

• To this end, the leader first selects a subset of items respecting her so-called interdiction budget B

• Then, the follower can choose from the remaining items maximizing her profit considering the

knapsack capacity C
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Interdiction problems revisited: knapsack interdiction

min
x

p>y

s.t. v>x ≤ B

x ∈ {0, 1}n

y ∈ arg max
y′

{
p>y ′ : y ′ ∈ Y (x)

}
with

• B,C ∈ R

• p, v ,w ∈ Rn

• feasible decisions of the follower (parameterized by the leader’s decision x)

Y (x) = {y ∈ {0, 1}n : w>y ≤ C , yi ≤ 1− xi , i ∈ [n]}

Note: same objective functions but different directions
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An Academic and Linear Example (Kleinert 2021)

Upper-level problem

min
x,y

F (x , y) = x + 6y

s.t. − x + 5y ≤ 12.5

x ≥ 0

y ∈ S(x)

Lower-level problem

min
y

f (x , y) = −y

s.t. 2x − y ≥ 0

− x − y ≥ −6

− x + 6y ≥ −3

x + 3y ≥ 3
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An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F

( 3
7 ,

6
7 )

(3, 0)

• Shared constrained set: gray area

• Green and red lines: nonconvex set of

optimal follower solutions (lifted to the

x-y -space)

• Green lines: Nonconvex and disconnected

bilevel feasible set of the bilevel problem
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An Academic Example; see Kleinert (2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F

( 3
7 ,

6
7 )

(3, 0)

1. The feasible region of the follower

problem corresponds to the gray area.

2. The follower problem—and therefore the

bilevel problem—is infeasible for certain

decisions of the leader, e.g., x = 0.

3. The set {(x , y) : x ∈ Ωx , y ∈ S(x)}
denotes the optimal follower solutions

lifted to the x-y -space, and is given by

the green and red facets.

4. This set is nonconvex!
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An Academic Example; see Kleinert (2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F

( 3
7 ,

6
7 )

(3, 0)

5. The single leader constraint (dashed line)

renders certain optimal responses of the

follower infeasible.

6. The bilevel feasible region F corresponds

to the green facets.

7. Thus, the feasible set is not only

nonconvex but also disconnected.

8. The optimal solution is (3/7, 6/7) with

objective function value 39/7.

9. In contrast, ignoring the follower’s

objective, i.e., solving the high-point

relaxation, yields the optimal

solution (3, 0) with objective function

value 3. Note that the latter point is not

bilevel feasible.
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Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

min
x,y∈R

x

s.t. y ≥ 0.5x + 1, x ≥ 0

y ∈ arg min
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 0.5}

Optimal solution: (2, 2)

y

x
1 2 3

1

2

3

leader

follower
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Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

• Strengthening ȳ ≥ 0.5 in the lower-level

problem using y ≥ 0.5x + 1 of the

upper-level problem

• This yields the minimum value of

0.5x + 1 is 1 due to x ≥ 0

• New bound of ȳ is ȳ ≥ 1

• High-point relaxation stays the same

min
x,y∈R

x

s.t. y ≥ 0.5x + 1, x ≥ 0,

y ∈ arg min
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 1},

Optimal solution: (0, 1) 6= (2, 2)

y

x
1 2 3

1

2

3

leader

follower

y

x
1 2 3

1

2

3

leader

follower
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1. Introduction: Overview

1. Introduction

1.1 What is this about?

1.2 A bit more formal, please

1.3 Some examples revisited

1.4 Why is bilevel optimization difficult?

1.5 Complexity results
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History

• Jeroslow (1985): general multilevel models

• Corollary: NP-hardness of the LP-LP bilevel problem

• Hansen, Jaumard, and Gilles Savard (1992): LP-LP bilevel problems are strongly NP-hard

• reduction from KERNEL

• Vicente, Gilles Savard, and Joaquim Júdice (1994): even checking whether a given point is a local

minimum of a bilevel problem is NP-hard
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Bilevel vs. mixed-integer optimization

Audet et al. (1997)

• Binary constraint x ∈ {0, 1}

• Can be modeled by an additional

variable y ,

• the upper-level constraint y = 0,

• and the lower-level problem

y = arg max
ȳ
{ȳ : ȳ ≤ x , ȳ ≤ 1− x} 1

1

upper-level’s

coupling constraint

lower-level’s

objective function

lower-level’s

feasible set

x

y

Consequence: linear optimization problems with binary variables are a special case of bilevel LPs.
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2. Solution Concepts: Overview

2. Solution Concepts
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Alice vs. Bob

Leader: Alice x

decides first

anticipates follower (Bob)

Follower: Bob y

decides second (of course)
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Bilevel optimization

min
x∈X ,y

F (x , y)

s.t. G(x , y) ≥ 0,

y ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized lower-level problem

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.
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A different problem?

min
x∈X ,y

F (x , y)

s.t. G(x , y) ≥ 0,

y ∈ S(x),

with lower level

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.

min
x∈X

F (x , y)

s.t. G(x , y) ≥ 0,

y ∈ S(x),

with lower level

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.
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Example: Dempe, Kalashnikov, et al. (2015)

Consider the bilevel problem

min
x

F (x , y) = x2 + y s.t. y ∈ S(x)

with

S(x) = arg min
y
{−xy : 0 ≤ y ≤ 1}

Best response of the follower

-1 1

1

x

y
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Example: Dempe, Kalashnikov, et al. (2015)

Best response of the follower

S(x) =


[0, 1], x = 0,

{0}, x < 0,

{1}, x > 0.

Mapping x 7→ F (x , S(x))

-1 1

1

x

y

• This is not a function and its minimum is

unclear since it depends on the

response y ∈ S(x) of the follower if the leader

chooses x = 0.

• For the follower, all responses

y ∈ S(0) = [0, 1] are optimal

• The optimal lower-level solution is not unique.

• If the follower chooses y = 0, the optimal

leader’s decision is x = 0, leading to an

objective function value of the leader of 0.

• However, if the follower chooses y = 1, the

objective function value of the leader is 1,

which is worse than 0 from the point of view

of the leader.

47



The optimistic world

Definition (Optimistic bilevel problem)

The problem

min
x∈X ,y

F (x , y)

s.t. G(x , y) ≥ 0,

y ∈ S(x),

with the lower-level problem given by

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.

is called the optimistic bilevel problem.
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The pessimistic world: without coupling constraints

Definition (Pessimistic bilevel problem without coupling constraints)

The Problem

min
x∈X

max
y∈S(x)

F (x , y)

s.t. G(x) ≥ 0,

where S(x) is the set of optimal solutions of the x-parameterized lower-level problem,

is called the pessimistic bilevel problem.
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The pessimistic world: with coupling constraints

Definition (Pessimistic bilevel problem with coupling constraints)

The Problem

min
x∈X

F (x)

s.t. G(x , y) ≥ 0 for all y ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized lower-level problem,

is called the pessimistic bilevel problem.
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Some remarks

Mapping x 7→ F (x , S(x))

-1 1

1

x

y

• The chosen solution concept (optimistic vs.

pessimistic) is very important

• It even changes whether a solution exists or not

• Example: the optimal solution (x , y) = (0, 0) with

objective function value 0 is attained in the last

example if one considers the optimistic bilevel

problem

• For all other choices of y ∈ S(0) = [0, 1], the

bilevel problem is not solvable since the infimum 0

of the upper-level’s objective function is not

attained anymore

• This, in particular, also applies to the pessimistic

bilevel problem in this example

• If the lower-level solution is unique for all x ∈ Ωx ,

both the pessimistic and the optimistic variants of

the bilevel problem coincide
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Graph of the solution set mapping

Definition (Graph of the solution set mapping)

The set

gphS := {(x , y) : y ∈ S(x)}

is called the graph of the solution set mapping S(·).
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Classic solution concepts

Definition (Local and global optimal solution)

A feasible point (x∗, y∗) of the bilevel problem is a local optimal solution if there exists an ε > 0 such

that

F (x , y) ≥ F (x∗, y∗)

holds for all (x , y) ∈ gphS ∩ Ω with

‖(x , y)− (x∗, y∗)‖ < ε.

A local optimal solution is called a global optimal solution if ε > 0 can be chosen arbitrarily large.
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3. Single-Level Reformulations: Overview

3. Single-Level Reformulations

3.1 Single-Level Reformulation using the Optimal Value Function

3.2 KKT Reformulation for LP-LP Bilevel Problems

3.3 The Strong-Duality Based Reformulation

3.4 Nonlinear But Convex Lower-Level Problems
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Single-Level Reformulations
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Single-Level Reformulations

• Fortuny-Amat and McCarl (1981): The beginning of reformulating bilevel problems as single-level

problems

• Always the same main idea: replace the lower-level problem with its optimality condition

• Afterward, solve the “ordinary” single-level problem

Three main techniques

1. Use the optimal value function of the lower-level problem

2. Use the KKT conditions of the lower-level problem

3. Use the strong-duality theorem for the lower-level problem
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Single-Level Reformulation using the Optimal Value Function

Consider the general optimistic bilevel problem

min
x∈X ,y

F (x , y)

s.t. G(x , y) ≥ 0,

y ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.
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Single-Level Reformulation using the Optimal Value Function

By using the optimal value function

ϕ(x) := min
y∈Y
{f (x , y) : g(x , y) ≥ 0} ,

we can equivalently re-write the problem as

min
x∈X ,y∈Y

F (x , y)

s.t. G(x , y) ≥ 0, g(x , y) ≥ 0,

f (x , y) ≤ ϕ(x).
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Single-Level Reformulation using the Optimal Value Function

min
x∈X ,y∈Y

F (x , y)

s.t. G(x , y) ≥ 0, g(x , y) ≥ 0

f (x , y) ≤ ϕ(x)

• Looks like a usual single-level problem

• However, the problem is the optimal value function ϕ : Rnx → R

• Evaluation: solve the lower-level problem for a given x

• In most cases: optimal value function is not known in algebraic, i.e., in closed, form

• It is usually nonsmooth (even under strong assumptions)
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KKT Reformulation for LP-LP Bilevel Problems

Most classic approach to obtain a single-level reformulation:

Exploit optimality conditions for the lower-level problem

• These optimality conditions need to be necessary and sufficient

• This is usually only possible for convex lower-level problems
that satisfy a reasonable constraint qualification

• later more on CQs
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Reminder: NLP basics

Consider the general nonlinear optimization problem (NLP)

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, i ∈ I = {1, . . . ,m},

hj(x) = 0, j ∈ J = {1, . . . , p}.

Assumptions

• Objective function f : Rn → R is continuously differentiable

• Constraint functions gi : Rn → R, i ∈ I , and hj : Rn → R, j ∈ J, are continuously differentiable

Notation

• Feasible set is denoted by F .
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Reminder: NLP basics

Let Bε(x∗) = {x ∈ Rn : ‖x − x∗‖ < ε} be the open ε-ball around x∗.

Definition ((Strict) Local Minimizer)

A point x∗ ∈ Rn is called a local minimizer if x∗ is feasible and if an ε > 0 exists such that

f (x) ≥ f (x∗) for all x ∈ F ∩ Bε(x∗). The point is called a strict local minimizer if f (x) > f (x∗) holds

for all x ∈ (F ∩ Bε(x∗)) \ {x∗}.

Besides local minimizers we will also consider global minimizers.

Definition ((Strict) Global Minimizers)

A point x∗ ∈ Rn is called a global minimizer if x∗ is feasible and if f (x) ≥ f (x∗) holds for all x ∈ F .

The point is called a strict global minimizer if f (x) > f (x∗) holds for all x ∈ F \ {x∗}.
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Reminder: NLP basics

Definition (Active Inequality Constraints)

Let x ∈ F be a feasible point. Then, the set

I (x) := {i ∈ I : gi (x) = 0}

is called the set of active inequality constraints at the point x .

Definition (Abadie Constraint Qualification)

We say that a feasible point x ∈ F satisfies the Abadie constraint qualification (ACQ) if

TX (x) = Tlin(x) holds.

Definition (Lagrangian Function)

The function

L(x , λ, µ) := f (x)−
m∑
i=1

λigi (x)−
p∑

j=1

µjhj(x)

is called Lagrangian function of the NLP.
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Reminder: KKT Conditions, KKT Point, Lagrangian Multipliers

Consider the general NLP with continuously differentiable functions f , g , and h.

1. The conditions

∇xL(x , λ, µ) = 0,

h(x) = 0,

λ ≥ 0, g(x) ≥ 0, λ>g(x) = 0

are called Karush–Kuhn–Tucker (or KKT) conditions of the NLP.

Here and in what follows,

∇xL(x , λ, µ) = ∇f (x)−
m∑
i=1

λi∇gi (x)−
p∑

j=1

µj∇hj(x)

is the gradient of the Lagrangian function with respect to the variables x .

2. Every vector ((x∗)>, (λ∗)>, (µ∗)>)> ∈ Rn ×Rm ×Rp that satisfies the KKT conditions is called a

KKT point of the NLP. The components of λ∗ and µ∗ are called Lagrangian multipliers.
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Reminder: KKT Conditions, KKT Point, Lagrangian Multipliers
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Reminder: the KKT theorem

Theorem (KKT Theorem under the Abadie CQ)

Let x∗ ∈ Rn be a local minimizer. Moreover, suppose that the Abadie CQ holds at x∗. Then, there

exist Lagrangian multipliers λ∗ ∈ Rm and µ∗ ∈ Rp so that ((x∗)>, (λ∗)>, (µ∗)>)> is a KKT point.
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Reminder: NLP basics

Definition (Linear Independence Constraint Qualification)

Let x ∈ Rn be a feasible point and let I (x) be the set of active inequality constraints at x . We say that

the linear independence constraint qualification (LICQ) is satisfied in x if the gradients

∇gi (x) for all i ∈ I (x),

∇hj(x) for all j = 1, . . . , p

are linearly independent.
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Reminder: the KKT theorem

Theorem (KKT Theorem under the LICQ)

Let x∗ ∈ Rn be a local minimizer that satisfies the LICQ. Then, there exist Lagrangian multipliers

λ∗ ∈ Rm and µ∗ ∈ Rp so that (x∗, λ∗, µ∗) is a KKT point.
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Back to bilevel problems

• Let’s keep it simple: KKT reformulation of an LP-LP bilevel

• Consider

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a,

y ∈ arg min
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
• Data: cx ∈ Rnx , cy , d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , and a ∈ Rm as well as C ∈ R`×nx ,

D ∈ R`×ny , and b ∈ R`
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KKT reformulation of LP-LP bilevel problems

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a

y ∈ arg min
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}

Lower-level problem can be seen as the x-parameterized linear problem

min
y

d>y s.t. Dy ≥ b − Cx .

Its Lagrangian function is given by

L(y , λ) = d>y − λ>(Cx + Dy − b).
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KKT reformulation of LP-LP bilevel problems

The KKT conditions of the lower level are given by . . .

• dual feasibility

D>λ = d , λ ≥ 0,

• primal feasibility

Cx + Dy ≥ b,

• and the KKT complementarity conditions

λi (Ci·x + Di·y − bi ) = 0 for all i = 1, . . . , `.
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KKT reformulation of LP-LP bilevel problems

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

λi (Ci·x + Di·y − bi ) = 0 for all i = 1, . . . , `.

• We now optimize over an extended space of variables including the lower-level dual variables λ

• Since we optimize over x , y , and λ simultaneously, any global solution of the problem above

corresponds to an optimistic bilevel solution

• The KKT reformulation is linear except for the KKT complementarity conditions

• Thus, the problem is a nonconvex NLP
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KKT reformulation of LP-LP bilevel problems
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s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

λi (Ci·x + Di·y − bi ) = 0 for all i = 1, . . . , `.

• . . .

• Thus, the problem is a nonconvex NLP

It is even worse! It’s a mathematical program with complementarity constraints (an MPCC).

Bad news (Ye and Zhu 1995)

Standard NLP algorithms usually cannot be applied for such problems since classic constraint

qualifications like the Mangasarian–Fromowitz or the linear independence constraint qualification

are violated at every feasible point.
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How to solve the KKT reformulation?

Remember

The only reason for the nonconvexity of the KKT reformulation are the bilinear products of the

lower-level dual variables λi and the upper-level primal variables x in the term

λiCi·x

and the bilinear products of the lower-level dual variables λi and the lower-level primal variables y in

the term

λiDi·y .
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How to solve the KKT reformulation?

Idea

Linearize these terms by exploiting the combinatorial structure

of the KKT complementarity conditions.

The complementarity conditions

λi (Ci·x + Di·y − bi ) = 0, i = 1, . . . , `

can be seen as disjunctions stating that either

λi = 0 or Ci·x + Di·y = bi

needs to hold.

These two cases can be modeled using binary variables

zi ∈ {0, 1}, i = 1, . . . , `,

in the following mixed-integer linear way:

λi ≤ Mzi , Ci·x + Di·y − bi ≤ M(1− zi ).

Here, M is a sufficiently large constant.
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How to solve the KKT reformulation?

By construction, we get the following result.

Theorem

Suppose that M is a sufficiently large constant. Then, the KKT reformulation is equivalent to the

mixed-integer linear optimization problem

min
x,y,λ,z

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

λi ≤ Mzi for all i = 1, . . . , `,

Ci·x + Di·y − bi ≤ M(1− zi ) for all i = 1, . . . , `,

zi ∈ {0, 1} for all i = 1, . . . , `.
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3. Single-Level Reformulations: Overview

3. Single-Level Reformulations

3.1 Single-Level Reformulation using the Optimal Value Function

3.2 KKT Reformulation for LP-LP Bilevel Problems

3.3 The Strong-Duality Based Reformulation

3.4 Nonlinear But Convex Lower-Level Problems
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Reminder: An LP and its dual

Consider the linear optimization problem

min
x∈Rn

c>x

s.t. Ax = b,

x ≥ 0,

with c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

The dual problem of the above LP is the LP

max
λ∈Rm

b>λ

s.t. A>λ ≤ c.
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Reminder: the weak-duality theorem

Theorem

Let x ∈ Rn be a feasible point of the primal problem and let λ ∈ Rm be a feasible point of the dual

problem. Then,

b>λ ≤ c>x

holds.
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Reminder: the strong-duality theorem

Theorem

Consider the pair of primal and dual LPs. Then, the following statements are equivalent:

1. The primal and the dual problem both are feasible.

2. The primal and the dual problem both have optimal solutions x∗ ∈ Rn and λ∗ ∈ Rm and

c>x∗ = b>λ∗

holds.

3. The primal and the dual problem both have a finite optimal objective value.
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Duality for the lower level problem

Lower-level problem can be seen as the x-parameterized linear problem

min
y

d>y s.t. Dy ≥ b − Cx .

The dual problem of this x-parameterized lower-level problem is given by

max
λ

(b − Cx)>λ s.t. D>λ = d , λ ≥ 0.
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Weak and strong duality

Weak duality

For a given decision x of the leader, weak duality of linear optimization states that

d>y ≥ (b − Cx)>λ

holds for every primal and dual feasible pair y and λ.

Strong duality

By strong duality, we know that every such feasible pair is a pair of optimal solutions if

d>y ≤ (b − Cx)>λ

holds.
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Strong-duality based reformulation

Consequently, we can reformulate the bilevel problem as

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

d>y ≤ (b − Cx)>λ
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KKT vs. strong duality

The KKT reformulation and the strong-duality based reformulation are equivalent:

λi (Ci·x + Di·y − bi ) = 0 for all i = 1, . . . , `

⇐⇒ λ>(Cx + Dy − b) = 0

⇐⇒ λ>Dy = λ>(b − Cx)

⇐⇒ d>y = λ>(b − Cx)
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Excursus

How to Really Solve a Mixed-Integer Linear Problem?
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3. Single-Level Reformulations: Overview

3. Single-Level Reformulations

3.1 Single-Level Reformulation using the Optimal Value Function

3.2 KKT Reformulation for LP-LP Bilevel Problems

3.3 The Strong-Duality Based Reformulation

3.4 Nonlinear But Convex Lower-Level Problems
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Nonlinear but convex lower-level problems

We now consider the bilevel problem

min
x∈X ,y

F (x , y)

s.t. y ∈ S(x),

where S(x) is the set of optimal solutions of the x-parameterized convex problem

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.

“Convexity” assumptions

• y 7→ f (x , y) is a convex function

• y 7→ g(x , y) is a concave function for all x ∈ X , i.e., for all feasible leader’s decisions

• Y is a “simple” convex set (e.g., variable bounds)
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Slater’s condition for the lower level

Definition (Slater’s constraint qualification for the lower level)

For a given upper-level feasible point x ∈ X of the bilevel problem we say that

Slater’s constraint qualification holds for the lower-level problem

min
y∈Y

f (x , y)

s.t. g(x , y) ≥ 0.

if there exists a (so-called Slater) point ŷ(x) with gi (x , ŷ(x)) > 0 for all i = 1, . . . , `.

One further assumption

We assume that all constraint functions gi , i = 1, . . . , `, are nonlinear.

One further remark

If the lower-level problem has equality constraints h(x , y) = 0, a Slater point only has to be feasible

w.r.t. these constraints, i.e., h(x , ŷ) = 0 has to hold.
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Slater’s condition for the lower level
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KKT Reformulation for Parametric Convex Lower-Level

• Let Slater’s constraint qualification hold for all upper-level feasible x

• Re-write the bilevel problem using the KKT conditions of the lower-level problem

min
x,y,λ

F (x , y)

s.t. x ∈ X ,

∇yL(x , y , λ) = ∇y f (x , y)−
∑̀
i=1

λi∇ygi (x , y) = 0,

g(x , y) ≥ 0,

λ ≥ 0,

λ>g(x , y) = 0.
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One part of the “equivalence”

Theorem (Dempe and Dutta (2012))

Let (x∗, y∗) be a global optimal solution of the bilevel problem and assume that the lower-level

problem is a convex optimization problem that satisfies Slater’s constraint qualification for x∗.

Then, the point (x∗, y∗, λ∗) is a global optimal solution of the single-level KKT reformulation for every

λ∗ ∈ Λ(x∗, y∗) :=
{
λ ≥ 0: ∇yL(x∗, y∗, λ) = 0, λ>g(x∗, y∗) = 0

}
.

Proof.

Since the x∗-parameterized lower-level problem is convex and since this parametric convex problem

satisfies Slater’s constraint qualification for the given x∗, the KKT theorem for convex problems

implies that λ∗ ∈ Λ(x∗, y∗) holds if and only if (x∗, y∗) ∈ gphS .
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What if Slater’s condition is violated (Dempe and Dutta 2012)

x-parameterized convex lower-level problem:

min
y1,y2

y1 s.t. y 2
1 − y2 ≤ x , y 2

1 + y2 ≤ 0

The feasible region of the x-parameterized

convex lower-level problem for x = 1.

y1

y2
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What if Slater’s condition is violated (Dempe and Dutta 2012)

min
y1,y2

y1 s.t. y 2
1 − y2 ≤ x , y 2

1 + y2 ≤ 0.

• If x = 0, the only feasible point of this lower-level problem is y = (y1, y2) = (0, 0)

• Thus, Slater’s constraint qualification is violated

• For x ≥ 0 (this will be our upper-level constraint later on),

the lower-level’s optimal solutions are given by

y(x) =

(0, 0), if x = 0,(
−
√

x/2,−x/2
)
, if x > 0.

• For x > 0, the Lagrangian multipliers are given by

λ1(x) = λ2(x) =
1

4
√

x/2

• If x = 0, the problem does not satisfy Slater’s constraint qualification

and the KKT conditions are not satisfied.

• Hence, no properly defined Lagrangian multipliers exist in this case.
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• For x ≥ 0 (this will be our upper-level constraint later on),
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−
√

x/2,−x/2
)
, if x > 0.

• For x > 0, the Lagrangian multipliers are given by
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1

4
√

x/2
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• Hence, no properly defined Lagrangian multipliers exist in this case.
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What if Slater’s condition is violated (Dempe and Dutta 2012)

The lower level revisited

min
y1,y2

y1 s.t. y 2
1 − y2 ≤ x , y 2

1 + y2 ≤ 0

The Lagrangian of the lower-level problem reads

L(x , y , λ) = y1 − λ1(x − y 2
1 + y2)− λ2(−y 2

1 − y2)

and its gradient w.r.t. y is given by

∇yL(x , y , λ) =

(
1 + 2λ1y1 + 2λ2y1

−λ1 + λ2

)
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What if Slater’s condition is violated (Dempe and Dutta 2012)

The KKT reformulation thus reads

min
x,y1,y2,λ1,λ2

x

s.t. x ≥ 0

y 2
1 − y2 ≤ x , y 2

1 + y2 ≤ 0

λ1 ≥ 0, λ2 ≥ 0

λ1(x − y 2
1 + y2) = 0 λ2(−y 2

1 − y2) = 0

1 + 2λ1y1 + 2λ2y1 = 0 − λ1 + λ2 = 0
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What if Slater’s condition is violated (Dempe and Dutta 2012)

KKT reformulation

min
x,y1,y2,λ1,λ2

x

s.t. x ≥ 0,

y 2
1 − y2 ≤ x , y 2

1 + y2 ≤ 0,

λ1 ≥ 0, λ2 ≥ 0,

λ1(x − y 2
1 + y2) = 0, λ2(−y 2

1 − y2) = 0,

1 + 2λ1y1 + 2λ2y1 = 0, −λ1 + λ2 = 0.

• (x , y(x), λ(x)) is, by construction,

feasible for the MPCC for x > 0

• The corresponding objective function

value of the bilevel problem converges

to 0 for x → 0.

• However, the problem does not possess

an optimal solution since for x = 0, the

uniquely determined lower-level’s solution

is y = (0, 0) but no feasible multipliers

exist in this case.

Take-home message

A global optimal solution of the bilevel problem does not need to correspond to a global optimal

solution of its KKT reformulation if the lower-level problem does not satisfy Slater’s constraint

qualification for the given upper-level part of the bilevel problem’s solution.
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The other part of the “equivalence”

Theorem (Dempe and Dutta (2012))

Let (x∗, y∗, λ∗) be a global optimal solution of the KKT reformulation and let the lower-level problem

be convex. Moreover, suppose that Slater’s constraint qualification is satisfied for the lower-level

problem for every x ∈ X . Then, (x∗, y∗) is a global optimal solution of the bilevel problem.

Remark

We will soon see in the proof that we really need that Slater’s condition holds for all x ∈ X

and not only for x = x∗.
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The other part of the “equivalence”: proof

Proof.

Suppose that (x∗, y∗, λ∗) is a global optimal solution of the KKT reformulation.

Thus, Λ(x∗, y∗) 6= ∅ holds. Since the objective function F of the KKT reformulation does not depend

on λ ∈ Λ(x∗, y∗), each point (x∗, y∗, λ) with λ ∈ Λ(x∗, y∗) is a global optimal solution as well.

Assume now that (x∗, y∗) is not a global optimal solution of the original bilevel problem.

Then, there exists a point (x , y) with x ∈ X and y ∈ S(x) such that

F (x , y) < F (x∗, y∗)

holds.
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The other part of the “equivalence”: proof

Proof.

Since y ∈ S(x) and Slater’s constraint qualification holds at x ∈ X , the respective KKT conditions are

valid and thus there exists a vector λ ∈ R` of Lagrangian multipliers such that

∇y f (x , y)−
∑̀
i=1

λi∇ygi (x , y) = 0,

λ>g(x , y) = 0,

λ ≥ 0,

g(x , y) ≥ 0

holds.

Consequently, (x , y , λ) is a feasible point for the KKT reformulation that has a better objective

function value as (x∗, y∗, λ∗).

This is a contradiction to the global optimality of (x∗, y∗, λ∗) and the claim follows.
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What if Slater’s conditions is missing (Dempe and Dutta 2012)

We consider the bilevel problem

min
x,y

(x − 1)2 + y 2 s.t. x ∈ R, y ∈ S(x),

where S(x) denotes the solution set mapping of the x-parameterized convex lower-level problem

min
y

x2y s.t. y 2 ≤ 0.

• y = 0 is the only feasible solution

• Thus, y = 0 is the uniquely determined global optimal solution of the lower-level problem

(independent of the leader’s decision x).

• This means that there exists no x for which Slater’s constraint qualification holds for the

lower-level problem.

• Since y = 0 always is the optimal follower’s decision, the uniquely determined global optimal

solution of the bilevel problem is (x , y) = (1, 0).
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What if Slater’s conditions is missing (Dempe and Dutta 2012)

KKT reformulation

min
x,y,λ

(x − 1)2 + y 2

s.t. x ∈ R

y 2 ≤ 0

λ ≥ 0

λy 2 = 0

x2 + 2λy = 0

• All feasible solutions of this MPCC are of the form (0, 0, λ) with λ ≥ 0.

• Since the objective function does not depend on λ,

all these points are also global optimal solutions of the MPCC.

• None of them correspond to the optimal solution (1, 0) of the bilevel problem.
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What about local solutions?

Attention!

• One needs to be very careful when solving the KKT reformulation only to local optimality

• There exist problems for which the KKT reformulation has local minima

that do not correspond to local minima of the bilevel problem

• Thus: On the level of local minima, the bilevel problem and its KKT reformulation

are not equivalent

• Details: Dempe and Dutta (2012)
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4. Some Theory on Linear Bilevel Problems: Overview

4. Some Theory on Linear Bilevel Problems
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The linear bilevel problem

We now consider LP-LP bilevel problems of the form

min
x,y

c>x x + c>y y

s.t. Ax ≥ a,

y ∈ arg min
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
with cx ∈ Rnx , cy , d ∈ Rny , A ∈ Rm×nx , and a ∈ Rm as well as C ∈ R`×nx , D ∈ R`×ny , and b ∈ R`.

Remark

This problem does not contain coupling constraints to avoid the further difficulties that arise due to

disconnected bilevel feasible sets.

105



The linear bilevel problem

We now consider LP-LP bilevel problems of the form

min
x,y

c>x x + c>y y

s.t. Ax ≥ a,

y ∈ arg min
ȳ
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The first structural result

• Our goal now is to understand the geometric properties of LP-LP bilevel problems.

• The main source of the remainder of this section is the book by J. F. Bard (1998).

Theorem

Suppose that S(x) is a singleton for all x ∈ Ωx and that Ω is non-empty and bounded. The

bilevel-feasible set can then be written equivalently as the intersection of the shared constraint set with

the feasible points of a piecewise linear equality constraint. In particular, the bilevel-feasible set is a

union of faces of the shared constraint set.

106



The first structural result

• Our goal now is to understand the geometric properties of LP-LP bilevel problems.

• The main source of the remainder of this section is the book by J. F. Bard (1998).

Theorem

Suppose that S(x) is a singleton for all x ∈ Ωx and that Ω is non-empty and bounded. The

bilevel-feasible set can then be written equivalently as the intersection of the shared constraint set with

the feasible points of a piecewise linear equality constraint. In particular, the bilevel-feasible set is a

union of faces of the shared constraint set.

106



The first structural result: proof

We start by first re-writing the bilevel-feasible set

F := {(x , y) : (x , y) ∈ Ω, y ∈ S(x)}

explicitly as

F :=

{
(x , y) : (x , y) ∈ Ω, d>y = min

ȳ
{d>ȳ : Cx + Dȳ ≥ b}

}
and use the optimal value function

ϕ(x) = min
y

{
d>y : Dy ≥ b − Cx

}
again.

Since S(x) is a singleton for all x ∈ Ωx , the optimal value function ϕ(x) is a well-defined function. By

using the strong-duality theorem, we can also express the optimal value function by means of the dual

LP as

ϕ(x) = max
λ

{
(b − Cx)>λ : D>λ = d , λ ≥ 0

}
.
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The first structural result: proof

From the classic theory of linear optimization we know that the optimal solution is attained in one of

the vertices of the feasible set,

which, for the dual LP, does not depend on the leader’s decision x

anymore.

Let λ1, . . . , λs be the set of all the dual polyhedron’s vertices, i.e., the set of vertices of the polyhedron

defined by

D>λ = d , λ ≥ 0.

Thus, we can further equivalently re-write the optimal value function as

ϕ(x) = max
{

(b − Cx)>λ : λ ∈ {λ1, . . . , λs}
}
.

This shows that ϕ(x) is a piecewise linear function and re-writing the bilevel-feasible set as

F =
{

(x , y) ∈ Ω: d>y − ϕ(x) = 0
}

shows the claim that the bilevel-feasible set can be written as the intersection of the shared constraint

set with a piecewise linear equality constraint.
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The first structural result: proof

Consider now again the definition of the optimal value function using the vertices

of the dual polyhedron of the lower-level problem.

Suppose that for a given x the corresponding solution is the vertex λk .

By using dual feasibility, we obtain

0 = d>y − ϕ(x) = (D>λk)>y − (λk)>(b − Cx) = (λk)>(Cx + Dy − b).

Thus, for those λk
i , i ∈ {1, . . . , `}, with λk

i > 0 we get (Cx + Dy − b)i = 0.

Hence, the bilevel-feasible set is a union of faces of the shared constraint set.
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In other words . . .

Corollary

Suppose that the assumptions of the last theorem hold. Then, the LP-LP bilevel problem is equivalent

to minimizing the upper-level’s objective function over the intersection of the shared constraint set

with a piecewise linear equality constraint.

Corollary

Suppose that the assumptions of the last theorem hold. Then, a solution of the LP-LP bilevel problem

is always attained at a vertex of the bilevel-feasible set.
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Solutions appear at vertices of the HPR

Theorem

Suppose that the assumptions of the last theorem hold. Then, a solution (x∗, y∗) of the LP-LP bilevel

problem is always attained at a vertex of the shared constraint set Ω.
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Solutions appear at vertices of the HPR: proof

Let (x1, y 1), . . . , (x r , y r ) be the distinct vertices of the shared constraint set Ω.

Since Ω is a convex polyhedron, any point in Ω can be written as a convex combination of these

vertices, i.e.,

(x∗, y∗) =
r∑

i=1

αi (x
i , y i )

with
r∑

i=1

αi = 1 and αi ≥ 0 for all i = 1, . . . , r .

From the proof of the last theorem it follows that the optimal value function ϕ is convex and

continuous.
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Solutions appear at vertices of the HPR: proof

Since the bilevel solution (x∗, y∗) is, of course, bilevel feasible, we obtain

0 = d>y∗ − ϕ(x∗)

= d>
(

r∑
i=1

αiy
i

)
− ϕ

(
r∑

i=1

αix
i

)

≥
r∑

i=1

αid
>y i −

r∑
i=1

αiϕ(x i )

=
r∑

i=1

αi

(
d>y i − ϕ(x i )

)
.

By the definition of the optimal value function we also have

ϕ(x i ) = min
y

{
d>y : Cx i + Dy ≥ b

}
≤ d>y i .

This implies d>y i − ϕ(x i ) ≥ 0.
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Solutions appear at vertices of the HPR: proof

Consequently, for all i ∈ {1, . . . , r} with αi > 0 it holds d>y i = ϕ(x i ) since we otherwise get a

contradiction on the last slide.

Hence, for those i with αi > 0 we obtain (x i , y i ) ∈ F .

From the last corollary we know that (x∗, y∗) is a vertex of the bilevel-feasible set. Suppose now that

there are two indices i and j with αi > 0 and αj > 0.

Thus, (x i , y i ) ∈ F and (x j , y j) ∈ F holds and we can write (x∗, y∗) as a proper convex combination of

two bilevel feasible points, which is a contradiction to the last corollary.

Thus, (x∗, y∗) is a vertex of the shared constraint set.
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5. Algorithms for Linear Bilevel Problems: Overview

5. Algorithms for Linear Bilevel Problems

5.1 The K th best algorithm

5.2 Branch-and-bound
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Setting

• One of the first proposed algorithms to solve LP-LP bilevel problems

• Bialas and Karwan (1984)

Consider the LP-LP bilevel problem

min
x,y

c>x x + c>y y

s.t. Ax ≥ a,

y ∈ arg min
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
.

Assumptions

The bilevel-feasible set is non-empty and bounded and S(x) is a singleton for all x ∈ Ωx .
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d>ȳ : Cx + Dȳ ≥ b
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High-point relaxation

Main idea

• Use that a bilevel-optimal solution is attained at one of the vertices of the shared constraint set Ω

• We carry out a search over the vertices of Ω to find a solution

• Similar to the simplex method for LPs

Consider the high-point relaxation

min
x,y

c>x x + c>y y

s.t. Ax ≥ a,

Cx + Dy ≥ b.
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The vertices of the HPR

Let us denote with

(x1, y 1), (x2, y 2), . . . , (x r , y r )

the ordered set of vertices of Ω, i.e., of basic feasible solutions of the high-point relaxation.

The ordering is chosen so that

c>x x i + c>y y i ≤ c>x x i+1 + c>y y i+1

holds for i = 1, . . . , r − 1.

Solving the LP-LP bilevel problem can thus be posed as finding the minimum-index vertex that is

feasible for the bilevel problem, i.e., we want to find the index

K∗ = min
{
i ∈ {1, . . . , r} : (x i , y i ) ∈ F

}
.

In other words:

• Find the first vertex in the ordered list whose

y -component is an optimal solution of the follower’s problem.

• Then, (xK∗ , yK∗) is a global optimal solution of the LP-LP bilevel problem.
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The Kth best algorithm

1: Set i ← 1. Solve the HPR to obtain the optimal solution (x1, y 1). Set W ← {(x1, y 1)} and T ← ∅.
2: Test if y i ∈ S(x i ) holds, i.e., if y i is the optimal follower’s response to the leader’s decision x i .

To this end, we solve the x i -parameterized follower’s problem

min
y

d>y s.t. Dy ≥ b − Cx i .

Let us denote the optimal solution by ỹ .

3: if ỹ = y i then

4: Set K∗ ← i and return the LP-LP bilevel solution (x i , y i ).

5: end if

6: Let W i denote the adjacent extreme points of (x i , y i ) such that (x , y) ∈W i implies

c>x x + c>y y ≥ c>x x i + c>y y i .

Set T ← T ∪ {(x i , y i )} and W ← (W ∪W i ) \ T .

7: Set i ← i + 1 and choose (x i , y i ) with c>x x i + c>y y i = minx,y

{
c>x x + c>y y : (x , y) ∈W

}
.

Go to Step 2.
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Some remarks

• Uniqueness of the follower’s problem is required in Step 2 and 3,

where we check if the current vertex is bilevel feasible.

• A crucial and costly part of the algorithm (that we do not discuss here)

is the computation of all adjacent extreme points in Step 6.

• For more details; see J. F. Bard (1998).
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5. Algorithms for Linear Bilevel Problems: Overview

5. Algorithms for Linear Bilevel Problems

5.1 The K th best algorithm

5.2 Branch-and-bound
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The KKT reformulation revisited

We know: the general LP-LP bilevel problem

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a,

y ∈ arg min
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
can be equivalently re-written via the KKT reformulation as the MPCC

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

λi (Ci·x + Di·y − bi ) = 0 for all i = 1, . . . , `.
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The basic idea behind LP-LP bilevel branch-and-bound

Start with solving the problem

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0.

This is the high-point relaxation extended with the dual variables λ and the lower level’s dual

polyhedron given by

D>λ = d , λ ≥ 0.
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The basic idea behind LP-LP bilevel branch-and-bound

Usually, there will be an i ∈ {1, . . . , `} so that the ith KKT complementarity condition is not satisfied,

i.e.,

λi (Ci·x + Di·y − bi ) > 0

holds.

Take such an i and construct two new sub-problems: one in which the constraint

λi = 0

is added and one in which the constraint

Ci·x + Di·y = bi

is added.

Then, we choose one of the unsolved sub-problems and proceed in the same way.
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A bit of notation

• Every node in the branch-and-bound tree is thus defined by the root-node problem . . .

• . . . as well as the index sets D ⊆ {1, . . . , `} and P ⊆ {1, . . . , `} with P ∩ D = ∅ that contain

those indices i for which the dual constraint λi = 0 or the primal constraint Ci·x + Di·y = bi is

added to the root-node problem

• Thus, we denote a node by its corresponding index-set pair (P,D), which again corresponds to

the problem

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

Ci·x + Di·y = bi for all i ∈ P,

λi = 0 for all i ∈ D.
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Branch-and-bound for LP-LP bilevel problems

1: u ← +∞ and Q ← {(∅, ∅)}.
2: while Q 6= ∅ do

3: Choose any (P,D) ∈ Q and set Q ← Q \ {(P,D)}.
4: Solve the node problem for P and D.

5: if the node problem for P and D is infeasible then go to Step 2.

6: Let (x̄ , ȳ , λ̄) denote the solution of node’s problem for P and D.

7: if c>x x̄ + c>y ȳ ≥ u then go to Step 2.

8: if (x̄ , ȳ , λ̄) satisfies λi (Ci·x + Di·y − bi ) = 0 for all i ∈ {1, . . . , `} then

9: Set (x∗, y∗, λ∗)← (x̄ , ȳ , λ̄) as well as u ← c>x x∗ + c>y y∗ and go to Step 2.

10: end if

11: Choose any i ∈ {1, . . . , `} with λi (Ci·x+Di·y−bi ) > 0. Set Q ← Q∪{(P∪{i},D), (P,D∪{i})}.
12: end while

13: if u < +∞ then

14: Return the optimal solution (x∗, y∗, λ∗).

15: else

16: Return the statement “The given LP-LP bilevel problem is infeasible.”

17: end if 127



Correctness

Definition (Relaxation)

Consider the optimization problem min{f (x) : x ∈ F}. The optimization problem min{g(x) : x ∈ F ′}
is called a relaxation of the other problem if F ⊆ F ′ and if g(x) ≤ f (x) holds for all x ∈ F .

• The easiest way to obtain a relaxation is to simply delete constraints from a given set of

constraints.

• This is exactly what we did to derive the high-point relaxation,

which means that the wording is reasonable.
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Correctness

The problem

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,

Ci·x + Di·y = bi for all i ∈ P,

λi = 0 for all i ∈ D,

(R)

for given P and D

is a relaxation of the problem

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d , λ ≥ 0,
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λi = 0 for all i ∈ D.

(N)
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Correctness

Lemma (Bounding Lemma)

Let P,D ⊆ {1, . . . , `} be given. Moreover, denote the optimal objective function value of the

relaxation by z rel and the optimal objective function value of Problem (N) by z (if they exist; otherwise

they are set to ∞). Then, it holds

z rel ≤ z .

Furthermore, the infeasibility of the relaxation (R) implies the infeasibility of Problem (N).

Proof.

Both statements immediately follow from the definition of a relaxation.
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Correctness

Lemma (Branching Lemma)

Let P,D ⊆ {1, . . . , `} be given. Moreover, let the point (x , y , λ) be feasible for Problem (N) for given

sets P and D. Let i ∈ {1, . . . , `}. Then, the point (x , y , λ) is either feasible for Problem (N) with the

sets (P ∪ {i},D) or for Problem (N) with the sets (P,D ∪ {i}).
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Correctness

Theorem (Correctness Theorem)

Suppose that the root-node relaxation of the KKT reformulation is bounded. Then, the

branch-and-bound algorithm terminates after a finite number of visited nodes with a global optimal

solution of of the KKT reformulation or with the correct indication of infeasibility.

Proof.

The only thing that is left to prove is that the algorithm terminates after a finite number of visited

nodes. This, however, follows immediately since we only have a finite number of KKT complementarity

conditions to branch on.
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How to implement this method?

It is rather easy to realize a branch-and-bound method for linear bilevel problems in modern

mixed-integer linear solvers such as Gurobi or CPLEX by using so-called special ordered sets of type 1

(SOS1).

A set of non-negative variables x1, . . . , xn is called a special ordered set of type 1 if there exists at most

one index i ∈ {1, . . . , n} with xi > 0 and xj = 0 for all j 6= i .

We denote this property of the set of variables x1, . . . , xn in the following via

SOS1(x1, . . . , xn).

This property of a subset of variables of a mixed-integer linear optimization problem can also be

communicated to a general-purpose solver such as those mentioned above.
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How to implement this method?

If we now introduce the non-negative auxiliary variables

si = (Ci·x + Di·y − bi ) for i = 1, . . . , `

we can state the complementarity conditions

(Ci·x + Di·y − bi ) = 0 or λi = 0 for i = 1, . . . , `

equivalently as

SOS1(si , λi ) for i = 1, . . . , `.

By doing so, the mixed-integer linear solver takes care of the branching on these SOS1 conditions.
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6. Mixed-Integer Linear Bilevel Problems: Overview

6. Mixed-Integer Linear Bilevel Problems

6.1 Attainability of Optimal Solutions

6.2 The Example by Moore and Bard

6.3 A Branch-and-Bound Method for Mixed-Integer Bilevel Problems
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Mixed-Integer Linear Bilevel Problems

Consider now the general bilevel mixed-integer linear problem

min
x∈X ,y

c>x x + c>y y

s.t. Ax ≥ a,

y ∈ arg min
ȳ∈Y

{
d>ȳ : Cx + Dȳ ≥ b

}
,

where the vectors cx , cy , d , a, b and matrices A,C ,D are defined as before.

The sets X and Y specify integrality constraints on a subset of x- and y -variables.
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Hardness

The shared constraint set of this bilevel MILP is, as usual, defined as the set of points (x , y) ∈ X × Y

satisfying all constraints of the upper and lower level, i.e.,

Ω := {(x , y) ∈ X × Y : Ax ≥ a, Cx + Dy ≥ b} .

The bilevel-feasible set of this bilevel MILP consists of all points (x , y) ∈ Ω from the shared constraint

set for which for a given x , the vector y is an optimal solution of the lower-level problem.

This means,

d>y ≤ ϕ(x)

holds. Here, ϕ(x) again is the optimal value of the lower-level problem:

ϕ(x) = min
y∈Y

{
d>y : Dy ≥ b − Cx

}
.

The optimal value function ϕ(x) thus corresponds to a parametric MILP in this case.

Hence, it is nonconvex, not continuous, and in general very difficult to describe.
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Hardness

• It is now NP-hard to check whether a given point (x , y) is a feasible solution of the bilevel MILP.

• Jeroslow (1985) showed that k-level discrete optimization problems are Σp
k -hard,

even when the variables are binary and all constraints are linear.

• This means that, e.g., a discrete bilevel optimization problem can be solved in nondeterministic

polynomial time, provided that there exists an oracle that solves problems in constant time that

are in NP.
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Attainability issues

In Vicente, G. Savard, and J. Júdice (1996), the authors consider three cases of bilevel MILPs and

study the following different assumptions:

(i) only upper-level variables are discrete,

(ii) all upper- and lower-level variables are discrete,

(iii) only lower-level variables can take discrete values.

• Assumption: all discrete variables are bounded and the bilevel-feasible set is non-empty

• For Case (i) and (ii), an optimal solution always exists and Case (i) can be reduced to a

mixed-integer linear program

• Case (ii) can be “reduced” to a linear trilevel problem

• However, for Case (iii), Moore and J. F. Bard (1990) and also Vicente, G. Savard, and J. Júdice

(1996) provide examples that demonstrate that the bilevel feasible region may not be closed and,

hence, the optimal solution may not be attainable.
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The example by Köppe, Queyranne, and Ryan (2010)

Consider

inf
0≤x≤1, y

{
x − y : y ∈ arg min

ȳ∈Z
{ȳ : ȳ ≥ x , 0 ≤ ȳ ≤ 1}

}
,

This is equivalent to

inf
x
{x − dxe : 0 ≤ x ≤ 1} .

y

x
1

1
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{ȳ : ȳ ≥ x , 0 ≤ ȳ ≤ 1}
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The example by Moore and Bard

We consider the discrete bilevel problem

min
x∈Z, y∈Z

{
−x − 10y : y ∈ arg min

ȳ∈Z
{ȳ : (x , ȳ) ∈ P}

}
,

where P is a polytope defined by

−25x + 20ȳ ≤ 30, x + 2ȳ ≤ 10,

2x − ȳ ≤ 15, 2x + 10ȳ ≥ 15.

x

y

1 2 3 4 5 6 7 8

1

2

3

4
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The example by Moore and Bard

• Discrete points are feasible for the

high-point relaxation.

• The point (2, 4) is the optimal solution of

the high-point relaxation

• The point (2, 2) is the optimal solution of

the bilevel MILP.

• Triangles represent bilevel-feasible

solutions

• Dashed lines represent the feasible region

of the bilevel LP in which the integrality

constraints on the upper- and lower-level

variables are “relaxed”
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Setting

Consider the mixed-integer linear bilevel problem

min
x∈X , y

c>x x + c>y y

s.t. Ax ≥ a,

y ∈ arg min
ȳ∈Y

{
d>ȳ : Cx + Dȳ ≥ b

}
.

• The variables x and y are split in x = (xCx , xIx ) and y = (yCy , yIy ).

• xCx and yCy are the upper- as well as lower-level variables that are continuous-valued

• xIx and yIy are upper- as well as lower-level variables that are integer-valued
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Setting

Integrality is encoded by using the sets X and Y via

X := {x = (xCx , xIx ) : xIx ∈ ZnxI } ,

Y :=
{
y = (yCy , yIy ) : yIy ∈ ZnyI

}
.

• nxI and nyI : number of integer variables in the upper- as well as the lower-level problem
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Fathoming rules

Goal: design a branch-and-bound method for bilevel MILPs.

Let us first recap the main fathoming rules that we use in the classic branch-and-bound method

for linear bilevel problems.

There, we fathomed nodes according to the following three rules:

Rule 1 The problem at the current node is infeasible.

Rule 2 The problem at the current node is feasible and has a solution with an optimal

objective function value that is not smaller than the current incumbent, i.e., it is not

smaller than the optimal objective function value of the best solution found so far.

Rule 3 The problem at the current node is feasible w.r.t. all complementarity constraints.

Since we branch on integers again, Rule 3 translates into . . .

Rule 3 The problem at the current node is feasible w.r.t. all integrality constraints.
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The example by Moore and Bard—revisited

• Bilevel solution: (x∗, y∗) = (2, 2)

• Optimal objective function value F (x∗, y∗) = −22.

• Optimal solution of the problem in which we “relax”

all integrality conditions is the point (x , y) = (8, 1).

• This point is even integer- and bilevel-feasible.

• The corresponding objective function value,

however, is F (x , y) = −18.

• This is worse than the optimal objective function

value.
x

y

1 2 3 4 5 6 7 8

1

2

3

4
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Two crucial observations

Observation

The solution of the continuous “relaxation” of the mixed-integer linear bilevel problem does not

provide a valid lower bound on the solution of the original problem.

Observation

Solutions of the continuous “relaxation” of the mixed-integer linear bilevel problem that are feasible for

the original bilevel problem cannot, in general, be fathomed.
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Let’s do it anyway . . .

These two observations already render Rule 2 and Rule 3 invalid in general.

The following example (also taken from Moore and J. F. Bard (1990)) shows what goes wrong if

Rule 3 is applied although it is invalid.

We consider the integer linear bilevel problem

max
x,y

F (x , y) = −x − 2y

s.t. y ∈ S(x),

where S(x) denotes the set of optimal solutions of the x-parameterized integer linear problem

max
y

f (x , y) = y

s.t. − x + 2.5y ≤ 3.75,

x + 2.5y ≥ 3.75,

2.5x + y ≤ 8.75,

x , y ≥ 0,

x , y ∈ Z.
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Let’s do it anyway . . .

1 2 3 4

1

2

3

x

y
• Shared constraint set contains three

integer-feasible points: (2, 1), (2, 2), and

(3, 1).

• If the leader chooses x = 2, the follower

chooses y = 2, leading to F = −6.

• If the leader decides for x = 3, the

follower optimally reacts with y = 1,

leading to an objective function value

of F = −5.

• Thus, (x∗, y∗) = (3, 1) is the optimal

solution with F ∗ = −5.
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Let’s do it anyway . . .

Let us now consider what a classic

depth-first branch-and-bound

method would look like if we (as

usual) branch on fractional integer

variables and if “relaxations” are

obtained by relaxing integrality

restrictions.

0(0, 1.5)

1(1.25, 2)

2(2, 2.3)

3 4 (2, 2)

F = −6

5

6 (1.25, 1)

7(3.45, 0.12)

8 9 (2, 1)∗

10 (3, 1)

F = −5

11

y ≥ 2

x ≥ 2

y ≥ 3 y ≤ 2

x ≤ 1

y ≤ 1

x ≤ 1x ≥ 2

x ≥ 4 x ≤ 3

x ≥ 3
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Another observation

Thus, we can make the third main observation.

Observation

An integer-feasible solution found at a node that contains branching restrictions on the follower

variables cannot, in general, be used to fathom this node.
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Some notation

• Ix and Iy : index sets of integer variables of the leader and the follower

• Ux and Uy : |Ix |- as well as |Iy |-dimensional vectors of upper bounds for the integer variables of

the leader and of the follower

• If an integer variable is not bounded from above in the original problem,

the corresponding entry in Ux or Uy is set to ∞.

• Assumption: all initial lower bounds of all integers variables are 0

• Can be encoded using the sets X and Y of the original problem formulation.
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Some notation

The problem at node k of the branch-and-bound tree is defined by the variable bound sets

Xk :=
{

(xk , x̄k) : 0 ≤ xk
j ≤ xj ≤ x̄k

j ≤ Ux
j for j ∈ Ix

}
,

Yk :=
{

(y k , ȳ k) : 0 ≤ y k

j
≤ yj ≤ ȳ k

j ≤ Uy
j for j ∈ Iy

}
.

The notation Y0 is used to indicate that no other bounds than the original ones are imposed on the

follower’s integer variables.
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Some notation

Note further that for a node k along the path from the root to node l , the problem associated to node l

is derived from the problem of the node k by additionally imposing bounds on the integer variables, i.e.,

Xl ⊆ Xk , Yl ⊆ Yk

holds . . .

which means that

xk ≤ x l , y k ≤ y l

as well as

x̄k ≥ x̄ l , ȳ k ≥ ȳ l

holds.
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Some notation

The sets

Rx
k :=

{
j ∈ Ix : xk

j > 0 or x̄k
j < Ux

j

}
and

Ry
k :=

{
j ∈ Iy : y k

j
> 0 or ȳ k

j < Uy
j

}
denote that sets of integer variables on which additional bounds are imposed (due to branching).
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Some notation

For later reference we define the problem

min
x≥0, y

c>x x + c>y y

s.t. Ax ≥ a,

bounds in Xk , i.e., xk
j ≤ xj ≤ x̄k

j for j ∈ Ix ,

y ∈ Sk(x)

(C-BLP)

with the lower-level problem

min
y≥0

d>y

s.t. Cx + Dy ≥ b,

bounds in Yk , i.e., y k

j
≤ yj ≤ ȳ k

j for j ∈ Iy

as the bilevel problem at node k in which the integrality constraints are omitted.

Its optimal objective function value is denoted with F cont
k .
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Some notation

The continuous high-point relaxation is given by

min
x≥0, y≥0

c>x x + c>y y

s.t. Ax ≥ a,

bounds in Xk , i.e., xk
j ≤ xj ≤ x̄k

j for j ∈ Ix ,

Cx + Dy ≥ b,

bounds in Yk , i.e., y k

j
≤ yj ≤ ȳ k

j for j ∈ Iy .

(C-HPR)

Its optimal objective function value is denoted with F hpr
k .
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Bounding theorem 1

Theorem (Moore and J. F. Bard (1990))

Consider the sub-problem at node k with the bounds given by Xk and Yk = Y0. Let (xk , y k) be the

global optimal solution of the continuous high-point relaxation (C-HPR). Then, F hpr
k = F (xk , y k) is a

lower bound on the global optimal solution of the mixed-integer linear bilevel problem at node k.

Proof.

Consider any successor node l of node k in the branch-and-bound tree, i.e., Xl ⊆ Xk and Yl ⊆ Y0

holds. Let (x l , y l) be a global optimal solution of the mixed-integer linear bilevel problem associated

with node l . Assume now that F (x l , y l) < F hpr
k holds. This directly leads to a contradiction since

(x l , y l) is also a feasible point of the high-point relaxation at node k.
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Bounding theorem 2

Theorem

Consider the sub-problem at node k with the bounds given by Xk and Yk . Let (xk , y k) be the global

optimal solution of the high-point relaxation (C-HPR). Then, F hpr
k = F (xk , y k) is a lower bound on the

global optimal solution of the mixed-integer linear bilevel problem at node k if y k

j
< y k

j < ȳ k
j holds for

all j ∈ Ry
k .

• This means that the solution of the high-point relaxation of the continuous relaxation of the

mixed-integer linear bilevel problem at node k can serve as a valid lower bound if the optimal

integer variables of the follower at node k are not active w.r.t. their bounds imposed due to

branching.

• Note that this is, of course, a rather strong condition, which is, for instance, violated at node 9 in

the previous example.
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Bounding theorem 2: proof

Let again (x l , y l) be the solution of the mixed-integer linear bilevel problem associated with node l ,

which is a successor node of node k, i.e., Xl ⊆ Xk and Yl ⊆ Yk holds.

Assume again that F (x l , y l) < F hpr
k holds. This directly implies that (x l , y l) cannot be feasible for the

high-point relaxation of the continuous relaxation of the mixed-integer linear bilevel problem at node k.

We consider the points (x ′, y ′) of the convex combination of (x l , y l) and (xk , y k), i.e.,

(x ′, y ′) = λ(xk , y k) + (1− λ)(x l , y l)

holds for some λ ∈ [0, 1]. It holds

F (x ′, y ′) = λF (xk , y k) + (1− λ)F (x l , y l)

since F is linear.
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Bounding theorem 2: proof

Using F (x l , y l) < F hpr
k we obtain

F (x ′, y ′) = λF (xk , y k) + (1− λ)F (x l , y l)

< λF (xk , y k) + (1− λ)F (xk , y k)

= F (xk , y k)

for λ > 0.

This, however, contradicts the optimality of (xk , y k) since for sufficiently small λ, (x ′, y ′) is feasible for

the high-point relaxation of the continuous relaxation of the mixed-integer linear bilevel problem at

node k.
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node k.
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Bounding corollary

Corollary

Consider the sub-problem at node k with the bounds given by Xk and Yk . Let (xk , y k) be the global

optimal solution of the high-point relaxation (C-HPR). Then, F hpr
k = F (xk , y k) is a lower bound on the

global optimal solution of the mixed-integer linear bilevel problem at node k if all restrictions in Yk are

relaxed.

Proof.

Relaxing all restrictions in Yk is equivalent to replacing Yk with Y0. Thus, the first theorem applies.
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Branch-and-Bound for MILP-MILP Bilevel Problems

1: Set k = 0 and initialize Xk and Yk with the bounds of the original mixed-integer linear bilevel problem. Set

Rx
k = ∅, Ry

k = ∅, and F∗ =∞.

2: Solve (C-HPR). If this problem is infeasible go to Step 7. Otherwise, let F hpr
k be the optimal objective

function value. If F hpr
k ≥ F∗ holds, go to Step 7 as well.

3: Solve (C-BLP). If this problem is infeasible, go to Step 7. Otherwise, denote the solution as (xk , yk ).

4: If (xk , yk ) is integer-feasible, go to Step 5. Otherwise, select a fractional leader variable index j ∈ Ix or a

fractional follower variable index j ∈ Iy and place a new bound on the selected variable. Set k ← k + 1 and

update Xk or Yk as well as Rx
k or Ry

k accordingly. Go to Step 2.

5: Fix x = xk and solve the follower’s problem to obtain the overall bilevel feasible point (xk , ŷk ). Compute

F (xk , ŷk ) and update F∗ = min{F∗,F (xk , ŷk )}.
6: If xkj = x̄kj for all j ∈ Ix and if yk

j
= ȳk

j for all j ∈ Iy holds, go to Step 7. Otherwise, select an integer

variable j ∈ Ix with xkj < x̄kj or a j ∈ Iy with yk
j
< ȳk

j and place a new bound on it. Set k ← k + 1 and

update Xk or Yk as well as Rx
k or Ry

k accordingly. Go to Step 2.

7: If no open node exists, go to Step 8. Otherwise, branch on the lastly added open node, set k ← k + 1, and

update Xk or Yk as well as Rx
k or Ry

k accordingly.

8: If F∗ =∞, the original mixed-integer linear bilevel problem is infeasible. Otherwise, F∗ is the global optimal

objective function value.
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Correctness results

Proposition

If all follower variables are integer, the branch-and-bound algorithm finds the global optimal solution of

the mixed-integer linear bilevel problem.

Proposition

Assume that an optimum exists for the mixed-integer linear bilevel problem and that all follower

variables are continuous. If the fathoming rules 2 and 3 are used, the branch-and-bound algorithm

always terminates with the global optimal solution.
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7. Outlook: Overview

7. Outlook
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What you should have learned today

You should have learned . . .

• to recognize bilevel optimization models in real-world applications,

• to properly model these real-world applications using the toolbox of bilevel optimization,

• about the surprising (and mostly challenging) properties of bilevel problems,

• how to reformulate bilevel problems as “ordinary” single-level problems,

• about the obstacles and pitfalls of these single-level reformulations,

• about structural properties of linear bilevel problems,

• how to solve linear bilevel problems,

• about structural properties of mixed-integer linear bilevel problems,

• how to solve mixed-integer linear bilevel problems.

I hope you had fun!
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What we have not looked at

• Further branch-and-bound/branch-and-cut methods for bilevel MILPs

• Jonathan F. Bard and Moore (1992), DeNegre and Ralphs (2009), Fischetti et al. (2017, 2018),

Tahernejad, Ralphs, and DeNegre (2017), and Xu and Wang (2014), . . .

• Pessimistic bilevel optimization

• Wiesemann et al. (2013); Liu, Fan, et al. (2018); Liu, Fan, et al. (2020) . . .

• Continuous and nonlinear bilevel optimization

• Dempe (2002) and the very many references therein

• Bilevel optimization under uncertainty

• Besançon et al. (2019, 2020); Burtscheidt and Claus (2020); Burtscheidt, Claus, and Dempe (2020);

Dempe, Ivanov, et al. (2017); Ivanov (2018); Jain, Ordonez, et al. (2008); Pita, Jain, Tambe, et al.

(2010); Yanikoglu and Kuhn (2018)

• . . . and many more topics
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What can you do in your PhD thesis on bilevel optimization?

• What about algorithms for bilevel problems with continuous linking variables?

• What about further cutting planes?

• What about presolve methods?

• What about computational pessimistic bilevel optimization?

• What about bilevel optimization under uncertainty?

• The community needs well-curated bilevel instance sets

• The community needs open-source software
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A little advertising

Martin Schmidt, Yasmine Beck:

A Gentle and Incomplete Introduction to Bilevel Optimization

http://www.optimization-online.org/DB_FILE/2021/06/8450.pdf
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Enjoy the Germany match tonight!

174


	Introduction
	What is this about?
	A bit more formal, please
	Some examples revisited
	Why is bilevel optimization difficult?
	Complexity results

	Solution Concepts
	Single-Level Reformulations
	Single-Level Reformulation using the Optimal Value Function
	KKT Reformulation for LP-LP Bilevel Problems
	The Strong-Duality Based Reformulation
	Nonlinear But Convex Lower-Level Problems

	Some Theory on Linear Bilevel Problems
	Algorithms for Linear Bilevel Problems
	The Kth best algorithm
	Branch-and-bound

	Mixed-Integer Linear Bilevel Problems
	Attainability of Optimal Solutions
	The Example by Moore and Bard
	A Branch-and-Bound Method for Mixed-Integer Bilevel Problems

	Outlook

