Mixed-Integer Nonlinear Optimization

Martin Schmidt

£ @schmaidt
June 2021

JPOC Spring School on MINLPs and Bilevel Problems “in Paris”

https://twitter.com/schmaidt

At the end of this day you ...

e know what an MINLP is

e can distinguish between convex and nonconvex MINLPs

e can apply standard MINLP modeling techniques

e know about and understand the classic algorithms for MINLP
e know the standard software tools for modeling MINLPs

e know the standard solvers that can be used to solve MINLPs

At the end of this day you ...

e know what an MINLP is

e can distinguish between convex and nonconvex MINLPs

e can apply standard MINLP modeling techniques

e know about and understand the classic algorithms for MINLP
e know the standard software tools for modeling MINLPs

e know the standard solvers that can be used to solve MINLPs

| will teach principles, not formulas!

At the end of this day you ...

e know what an MINLP is

e can distinguish between convex and nonconvex MINLPs

e can apply standard MINLP modeling techniques

e know about and understand the classic algorithms for MINLP
e know the standard software tools for modeling MINLPs

e know the standard solvers that can be used to solve MINLPs

| will teach principles, not formulas!

You will not remember the last ¢,
but | hope you remember the core ideas!

There should be no crying in this compact course!

1. Introduction

2. Algorithms for Convex MINLP
3. MILP-Based Reformulations
4. Nonconvex MINLP

5. Modeling Languages

6. Solvers

7. What Else?

8. Literature

1. Introduction: Overview

1. Introduction
1.1 Problem Classes
1.2 Source Problems
Subset Selection in Linear Regression

Cardinality-Constrained Portfolio Optimization

k-Means Clustering

1. Introduction: Overview

1. Introduction

1.1 Problem Classes

What is Optimization Anyway?

st. gi(x)>0, iel={1...,m}
hi(x)=0, jeJ=A{1,...,p}

e x: vector of variables/decisions
e f:R" — R: objective function
e g : R” — R: inequality constraints

e hj : R" — R: equality constraints

What is Optimization Anyway?

st. gi(x)>0, iel={1...,m}
hi(x)=0, jeJ=A{1,...,p}

e x: vector of variables/decisions
e f:R" — R: objective function
e g : R” — R: inequality constraints

e hj : R" — R: equality constraints

Feasible Set

Q={xeR":g(x)>0,iel, hi(x)=0, j€J}

. it depends!

. it depends!

e Are all functions linear?

e Are some of them nonlinear?

e Is the objective function convex?

e Is the feasible set convex?

e Are the variables continuous-valued?
e Do we have integer variables?

e Are the functions differentiable?

Convexity is Crucial

“The great watershed in
optimization isn’t between linearity
and nonlinearity, but convexity and
nonconvexity."

— R. Tyrrell Rockafellar

Mixed-Integer Nonlinear Optimization

We consider MINLPs of the form

e
sit. c(x) <0
xeX
xi €%, i€l

e f:R" - R and c:R" — R™ are twice continuously differentiable

e X C R" is a bounded polyhedral set, i.e.,
X={xeR": I <Ax < u}

for some matrix A and some vectors /, u

e | C{1,...,n} is the index set of integer variables

10

Mixed-Integer Nonlinear Optimization

We consider MINLPs of the form

e
sit. c(x) <0
xeX
xi €%, i€l

e f:R" - R and c:R" — R™ are twice continuously differentiable

e X C R" is a bounded polyhedral set, i.e.,
X={xeR": I <Ax < u}

for some matrix A and some vectors /, u

e | C{1,...,n} is the index set of integer variables

This also contains maximization problems, equality constraints, simple variable
bounds, and more general discrete sets (later more ...)

10

Is this important?

Yes!

11

Is this important?

Yes!

MINLPs are everywhere! We will see some examples soon.

11

Is this important?

Yes!

MINLPs are everywhere! We will see some examples soon.

The problem class of MINLPs includes ...

e nonlinear problems (NLPs),

quadratic problems (QPs),

linear problems (LPs),

e mixed-integer linear problems (MILPs),

11

The MINLP Tree

MINLP

Couvex Couvex Noucouvex Noucouvesx

NLT MiLe L(INIR S NP

Folyuourial

SOocP MISoce huee Cphucizebou,
Couex Coucec Noucou ve « Noucouvex

Qe ruee Qe (814

& MILe

12

Convex and Nonconvex MINLPs

“The great watershed in optimization isn't between linearity and nonlinearity,
but convexity and nonconvexity."

— R. Tyrrell Rockafellar
Definition
An optimization problem is convex if

e the feasible set is convex

e and if the objective function is convex on the feasible set.

13

Convex and Nonconvex MINLPs

“The great watershed in optimization isn't between linearity and nonlinearity,
but convexity and nonconvexity."
— R. Tyrrell Rockafellar
Definition
An optimization problem is convex if
e the feasible set is convex

e and if the objective function is convex on the feasible set.

Well ...

e But mixed-integer feasible sets are always nonconvex!

e So there are no “convex MINLPs"?

13

Convex and Nonconvex MINLPs

Definition
The MINLP
e
st. c(x)<0
xeX
xi€Z, i€l

is called convex if the objective function f and the constraint function c are
convex functions. If the objective function or at least one of the constraints are
nonconvex, the problem is called a nonconvex MINLP.

14

Convex and Nonconvex MINLPs

This means that the MINLP is called convex if the NLP relaxation

min f(x)
st. c(x) <0
xeX

is a convex optimization problem.

e To obtain a convex feasible set using “c(x) < 0", ¢ needs to be convex.

e For inequalities “c(x) > 0", ¢ needs to be concave to lead to a convex
feasible set.

15

Hardness of MINLP

MINLP combines challenges of handling nonlinearities with the combinatorial
explosion due to integer variables!

16

Hardness of MINLP

MINLP combines challenges of handling nonlinearities with the combinatorial
explosion due to integer variables!

e It is an NP-hard combinatorial problem
e ... because it includes MILP (Kannan and Monma 1978)

e Even worse, nonconvex integer optimization problems are in general
undecidable (Jeroslow 1973)
e Jeroslow: example of a quadratically constrained integer program
e Theorem: no computing device exists that can compute the optimum for all
problems in this class

16

Making it “practable”

Assumption

e X is compact, i.e., a polytope

It's still NP-hard, but ...

17

Making it “practable”

Assumption

e X is compact, i.e., a polytope

It's still NP-hard, but ...

Theorem

Suppose that the set Q is
non-empty and compact and that
the function f : Q2 — R is
continuous. Then, f has at least
one global minimizer and at least
one global maximizer.

17

Is it harder than MILP?

e MINLP is NP-hard since it includes mixed-integer linear programming
(MILP).

e Question: lIs it harder?

18

Is it harder than MILP?

e MINLP is NP-hard since it includes mixed-integer linear programming
(MILP).

e Question: Is it harder? Somehow, yes!

Definition

Let S C R" be any set. The convex hull of S is the set

conv(S) :={zeR": z=Xx+ (1 —)y forall A € [0,1], x,y € S}.

18

Is it harder than MILP?

e The convex hull is crucial in mixed-integer linear programming.

e Linear Optimization 101: A linear problem obtains a solution at a vertex
of the feasible set.

e Thus: We can solve the MILP by solving the LP over the convex hull of
the MILP’s integer-feasible points.

19

Is it harder than MILP?

e The convex hull is crucial in mixed-integer linear programming.

e Linear Optimization 101: A linear problem obtains a solution at a vertex
of the feasible set.

e Thus: We can solve the MILP by solving the LP over the convex hull of
the MILP’s integer-feasible points.

19

Is it harder than MILP?

e The convex hull is crucial in mixed-integer linear programming.

e Linear Optimization 101: A linear problem obtains a solution at a vertex
of the feasible set.

e Thus: We can solve the MILP by solving the LP over the convex hull of
the MILP’s integer-feasible points.

19

MILP: Separation = Optimization!

20

MILP: Separation = Optimization!

20

MILP: Separation = Optimization!

20

MILP: Separation = Optimization!

20

MINLP: Separation = Optimization? No!

Consider the MINLP

21

MINLP: Separation = Optimization? No!

Consider the MINLP

n 1 2
min > (x-5)

i=1

st. x€{0,1}, i=1,...,n

e The solution of the continuous

relaxation is

ol 1y
— \\ = 2,...,2

/ /’ h \ e This is not an extreme point of the
\ \ | feasible set of the continuous
\ N relaxation

e Even worse: it lies in the strict interior
of the convex hull of the feasible set of
the MINLP

e Thus: It cannot be separated!

21

A Potential Remedy: The Epigraph Formulation

The original MINLP

)
sit. ¢(x) <0
xe X
xi €%, i€l
and its epigraph reformulation
xefinen 7
sit. f(x)<n
c(x) <0
xeX
xi €2, i€l

are equivalent and the optimal solutions of the latter always lie on the
boundary of the convex hull of the feasible set.

22

1. Introduction: Overview

1. Introduction

1.2 Source Problems

23

Subset Selection in Linear Regression: An MINLP?

e Given: m data points ;, C R and y; €R, i=1,...,m
e Task: Find 8 € RY such that

m

Z (Yi - XiTﬂ)z

i=1

is minimized while limiting the cardinality of 5 to K.

24

Subset Selection in Linear Regression: An MINLP?

e Given: m data points ;, C R and y; €R, i=1,...,m
e Task: Find 8 € RY such that

m

Z (Yi - XiTﬂ)z

i=1

is minimized while limiting the cardinality of 5 to K.

Model (Bertsimas, R. Shioda 2009)

m

d 2
min P — Xii Bj
st. [supp(B)| < K

Is this already an MINLP?

24

Subset Selection in Linear Regression: An MINLP?

e Given: m data points ;, C R and y; €R, i=1,...,m
e Task: Find 8 € RY such that

m

Z (Yi - XiTﬂ)z

i=1

is minimized while limiting the cardinality of 5 to K.

Model (Bertsimas, R. Shioda 2009)

m

d 2
min P — Xii Bj
st. [supp(B)| < K

Is this already an MINLP? No! But ...

24

Subset Selection in Linear Regression: An MINLP?

e Introduce a binary variable z; € {0,1} for every entry 8;, j=1,...,d, in

the 3 vector:

1, [can be used
Zj =
0, Bj=0

e Count the used f;'s by counting the binary variables

m

d 2
o, 3 (53w
j=1

d
BER ey

d
s.t. ZZJ <K
j=1

Mz < B < Mz, j=1,...,d
Zje{ovl}a Jj=1,....d

25

Subset Selection in Linear Regression

m

d 2
min Z <y,- — Zx,;@)
j=1

RrRd
pe -1

d
s.t. ZngK
j=1
MJIZJS/BJSMJUZW J:1~7d
Zje{ovl}a Jj=1....d

MINLP 101

Know the convexity properties of your instance!

26

Subset Selection in Linear Regression

m

d 2
o, 3 (- 3w
j=1

RrRd
Be 1

d
s.t. ZngK
j=1
Mz < B < Mz, j=1,...,d
Zje{ovl}a J:177d

MINLP 101

Know the convexity properties of your instance!

e This is a convex MINLP

e All constraints are linear, i.e., the feasible set is polyhedral and thus convex
e Objective function is convex in (3

26

Portfolio Optimization

e Markowitz (1952)

e n possibly risky assets

e mean return vector pu € R”

e covariance return matrix * € R"*"
e minimum portfolio return R > 0

e vector of ones e € R”

27

Portfolio Optimization

e Markowitz (1952)

e n possibly risky assets

e mean return vector pu € R”

e covariance return matrix * € R"*"
e minimum portfolio return R > 0

e vector of ones e € R”

. T
min x Xx
xERM

s.t. ,usz R, e'x=1, x>0

27

Cardinality-Constrained Portfolio Optimization

Let K be the maximum number of assets that can be included in the portfolio

. T
min X Xx
xERM, zER"
T T
st. u x>R, e x=1, x>0

0<xi <Mz, i=1,...,n

iz,- S K
i=1

28

Cardinality-Constrained Portfolio Optimization

Let K be the maximum number of assets that can be included in the portfolio

. T
min X XX
xERM, zER"

s.t. pTXER, e'x=1 x>0
0<xi <Mz, i=1,...,n

iz,- S K
i=1

We already used a standard modeling trick twice: big-M constraints

28

k-Means Clustering: Setting

Let X € RP*" be the matrix containing the data set

e Thus, we have n data points in RP.
e Data point x’ € R? corresponds to the ith column of X

Goal: find k mean vectors 1/ € RP, j =1,..., k, that satisfy

e his a sum of distances such as the squared Euclidean distance

k
B) =30 S Ik — w3,

J=1 xies;

S; C RP is the set of data points that are assigned to cluster j =1,..., k

1/ is the corresponding mean vector of the cluster

29

k-means Clustering: MINLP Modeling

e Introduce binary variables b; j € {0,1} for i =1,...,nand j=1,...,k

e Binary variables have the meaning

b 1, if point x' is assigned to cluster S;
ij =

p

0, otherwise

Reformulate the function h as

k

h(X, b,) ZZb,Jllx — 13, b= (biYIk

j=1 i=1

x" € RP should belong to exactly one cluster

e Can be modeled using the SOS-1-type constraints

k
Zb[d‘:l forall i=1,...,n
j=1

30

k-means Clustering: MINLP Modeling

min
b

s.t.

k n))
SO bl = 13

j=1 i=1

K

Zb,;jzl forall i=1,...,n

j=1

bij€{0,1} forall i=1,...,n, j=1,...,k

U c Rpxk

31

k-means Clustering: MINLP Modeling

k n
min D> biglix = I3
H j=1 i=1
K
st. > byj=1 forall i=1,...,n
j=1
bij€{0,1} forall i=1,...,n, j=1,...,k
e RPK

Convex or Nonconvex MINLP?

31

k-means Clustering: MINLP Modeling

k n
min 32> buillx = 3
j=1 i=1
k
st. > byj=1 forall i=1,...,n
j=1
bij€{0,1} forall i=1,...,n, j=1,...,k

e RPK

Convex or Nonconvex MINLP?

e We have products of binary variables b;; and
continuous variables ;7 in the objective function.

e Thus, it's a nonconvex MINLP.

31

Bilinearities

Consider the bilinear function

f:R* =R, f(x,y)=xy.

32

Bilinearities

Consider the bilinear function

f:R* =R, f(x,y)=xy.

VF(x) = (i)

The gradient is given by

32

Bilinearities

Consider the bilinear function

f:R* =R, f(x,y)=xy.

The gradient is given by

and the Hessian reads

which is an indefinite matrix.

32

Bilinearities

Consider the bilinear function

f:R* =R, f(x,y)=xy.

The gradient is given by

and the Hessian reads

which is an indefinite matrix.

Thus, it's nonconvex!

32

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

2.2 Kelley's Cutting-Plane Method

2.3 Outer Approximation

2.4 LP/NLP-Based Branch-and-Bound

33

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

34

The Birth of Computational Integer Optimization

ECONOMETRICA

VOLUME 28 July, 1960 NUMBER 3

AN AUTOMATIC METHOD OF SOLVING DISCRETE
PROGRAMMING PROBLEMS

By A. H. LaND AND A. G. Doic

In the classical linear programming problem the behaviour of continuous,
nonnegative variables subject to a system of linear inequalities is investigated.
One possible generalization of this problem is to relax the continuity condi-
tion on the variables. This paper presents a simple numerical algorithm for
the solution of programming problems in which some or all of the variables
can take only discrete values. The algorithm requires no special techniques
beyond those used in ordinary linear programming, and lends itself to
automatic computing. Its use is illustrated on two numerical examples.

35

Branch-and-Bound for MILPs

Branch-and-bound was proposed by Ailsa Land and Alison Doig in 1960

MISS ALISON DOIG, Uni
versity’s Department of Statistics, pre-
pares information for a computer.

Branch-and-bound for convex MINLP is almost the same as for mixed-integer
linear programming.

36

Branch-and-Bound for (M)ILPs

For the ease of presentation: all integer variables are binary

37

Branch-and-Bound for (M)ILPs

For the ease of presentation: all integer variables are binary

The original (M)ILP ...

min
xERN

s.t.

-
c x
Ax > b
x € {0,1}"

(1)

. and after some fixations

. T
min Cc X
xERM

st. Ax>b

x €{0,1}" (2)
x;=0 forallieZ
xi=1 forallie O

with Z,0 C {1,...,n}

37

Relaxations

Definition

Consider the optimization problem min{f(x): x € Q} with objective

function f and feasible set Q2. Another optimization problem

min.{g(x): x € Q'} is called relaxation of the original problem if Q@ C Q' and if
g(x) < f(x) holds for all x € Q.

38

Relaxations

Definition

Consider the optimization problem min{f(x): x € Q} with objective

function f and feasible set Q2. Another optimization problem

min.{g(x): x € Q'} is called relaxation of the original problem if Q@ C Q' and if
g(x) < f(x) holds for all x € Q.

Continuous Relaxations

e Convex NLP relaxation for convex MINLP

e LP relaxation for (M)ILP

38

Relaxations

Definition

Consider the optimization problem min{f(x): x € Q} with objective

function f and feasible set Q2. Another optimization problem

min.{g(x): x € Q'} is called relaxation of the original problem if Q@ C Q' and if
g(x) < f(x) holds for all x € Q.

Continuous Relaxations

e Convex NLP relaxation for convex MINLP

e LP relaxation for (M)ILP

Goals

e Relaxations are used to compute lower bounds
on the optimal objective function value

e A "good" relaxation should be tractable and “tight”.

38

LP Relaxation

Simply ignore the integrality conditions ...

- T
min Cc X
xERM
st. Ax>b
x €1[0,1]" (3)

x;=0 forallieZ
xi=1 forallie O

39

Branch-and-Bound: Bounding

Lemma

Let Z,0 C {1,...,n}. Moreover, let z;p be the objective value of the solution
of the LP relaxation (3) and let zjp be the optimal objective function value of
Problem (2) (if they exist, otherwise we set them to co). Then,

zZIp > z1p

holds. Furthermore, infeasibility of the LP relaxation (3) implies the infeasibility
of (2).

40

Branch-and-Bound: Bounding

Lemma

Let Z,0 C {1,...,n}. Moreover, let z;p be the objective value of the solution
of the LP relaxation (3) and let zjp be the optimal objective function value of
Problem (2) (if they exist, otherwise we set them to co). Then,

zZIp > z1p

holds. Furthermore, infeasibility of the LP relaxation (3) implies the infeasibility
of (2).

e Solving the LP relaxation gives us a lower bound on the optimal value

e If the LP relaxation is infeasible, then the original problem is infeasible

40

Branch-and-Bound: Branching

Lemma

Let Z,0 C{1,...,n}. Moreover, let x € {0,1}" be feasible for (2) with the
sets Z,0 and i € {1,...,n}. Then, x is either feasible for (2) with the sets
(ZU{i}, O) or feasible for (2) with the sets (Z,0 U {i}).

41

Branch-and-Bound for (Binary) MILPs

u <+ +oo and Q + {(0,0)}.
while Q # 0 do
Choose (Z,0) € Q and set Q +— Q\ {(Z, 0)}.
Solve the Problem (3) with Z and O.
if (3) with Z and O is infeasible then
Continue.
end if
Let X be the optimal solution of Problem (3).
if c'x > u then
Continue.
end if
if X is integer-feasible then
Set x* < X, u <+ c ! x*, and continue.
end if
Choose i with x; ¢ {0,1}.
Set Q + QU{(ZuU{i},0),(Z,0U{i})}.
end while
if u < 4oc0 then
return optimal solution x*.
else
return “The problem is infeasible.”

end if
42

Branch-and-Bound for General MILPs

Xiyel
/

X»‘CeI

43

Branch-and-Bound for General MILPs

Xiel
/|
wode Sobechou
‘ (xu"o with
X, ceT, bewg
{rechoual
‘ ‘ el
0 1 z 2 % < X”' v

43

Branch-and-Bound for General MILPs

i 0¢T
/|
wode Sobwheu
("n x) it
X, ceT . bewg
pmu‘w‘nw—'t(
\8/
X, vel

43

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

44

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = oo

44

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = oo LP relaxation, z; fractional

44

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 10 LP relaxation, z; fractional

z; fractional integer feasible, u = 10

44

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 10 LP relaxation, z; fractional

zj fractional

integer feasible, u = 10

zy fractional z fractional, u = 12

44

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 6 LP relaxation, z; fractional

zj fractional

integer feasible, u = 10

zy fractional z fractional, u = 12

zy fractional integer feasible, u = 6

44

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 6 LP relaxation, z; fractional

zj fractional

integer feasible, u = 10

z fractional, u = 12

zy fractional integer feasible, u = 6

infeasible integer feasible, u = 8

44

Branch-and-Bound for MILPs

Search trees get huge!

1572082 -

1573084 !

http://www.math.uwaterloo.ca/tsp/d15sol/computation 45

http://www.math.uwaterloo.ca/tsp/d15sol/computation

Branch-and-Bound for MILPs

e Every node of the branch-and-bound tree represents a sub-MILP
e In every node an LP is solved
e LP relaxation + set of additional variables bounds (or fixations)
e If a node has an integer feasible point it becomes a leaf of the search tree

e Integer feasible points yield upper bounds
e Best (smallest) upper bound is called “incumbent” u

e Infeasible nodes also become leafs of the search tree

e Nodes with fractional solution and objective function value f > u also
become leafs

e Relaxation solutions yield lower bounds

e Best lower bound (“best bound”) ¢
e Optimality gap: g=u—¢
e g =0 is a proof of optimality

46

Branch-and-Bound for MILPs

Theorem (Correctness Theorem)

Suppose that the LP relaxation of the original MILP is bounded. Then, the
algorithm terminates after a finite number of nodes with a global optimal
solution or with the correct indication of infeasibility.

47

From MILP to Convex MINLP

e Replace LP relaxation with convex NLP relaxations in the nodes
e Technical details

e All functions need to be continuously differentiable
e All convex node NLPs need to satisfy Slater’'s condition

e All node NLPs need to be solved to global optimality

e ... which is “easy” since they are convex!

48

What about nonconvex MINLPs?

Branch-and-bound is not correct for nonconvex MINLPs

But why?

49

What about nonconvex MINLPs?

Branch-and-bound is not correct for nonconvex MINLPs
But why?

e Locally optimal solutions might lead to pruned nodes
that cannot be pruned!

e \We might not find the global optimal solution.

49

Branch-and-Bound

Further Algorithmic Ingredients

e Node selection

e Branching rules

e Preprocessing of the entire MILP (root node)
e Node preprocessing (sub-MILPs)

e Cutting planes

e Heuristics

e Parallelization

50

Branch-and-Bound

Further Algorithmic Ingredients

e Node selection

e Branching rules

e Preprocessing of the entire MILP (root node)
e Node preprocessing (sub-MILPs)

e Cutting planes

e Heuristics

e Parallelization

Performance

e Worst-case complexity: exponential

e In practice it often performs much better!

50

Branch-and-Bound Solvers for MILPs

CPLEX
e http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/
e Commercial (IBM), but free licenses available for academic purposes
e Gurobi

e http://www.gurobi.com/
e Commercial, but free licenses available for academic purposes

Xpress

e http://www.fico.com/en/products/fico-xpress-optimization-suite/
e Commercial (FICO), but free licenses available for academic purposes

e SCIP

e http://scip.zib.de
e Academic code, free for non-commercial purposes, open source

e CBC

e https://projects.coin-or.org/Cbc
e Open source

51

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gurobi.com/
http://www.fico.com/en/products/fico-xpress-optimization-suite/
http://scip.zib.de
https://projects.coin-or.org/Cbc

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.2 Kelley's Cutting-Plane Method

52

Branch-and-Bound vs. Cutting-Plane Methods

The Main ldea of Branch-and-Bound

e By branching we get rid of the integer variables
e Subproblems that need to be solved are continuous relaxations

e Bounding and finiteness of the set of integer-feasible points leads to

correctness of the method

53

Branch-and-Bound vs. Cutting-Plane Methods

The Main ldea of Branch-and-Bound

e By branching we get rid of the integer variables
e Subproblems that need to be solved are continuous relaxations

e Bounding and finiteness of the set of integer-feasible points leads to
correctness of the method

The Main Idea of Cutting-Plane Methods

e Besides integrality constraints, the hardness of MINLPs
comes from nonlinearities
e Assumption: We can solve mixed-integer linear problems

e Tractability: NP-hardness vs. polytime solvable problems
e Practability: Powerful solvers that solve NP-hard problems

e |dea: Get rid of nonlinearities by linear approximations

e Correctness will follow by convergence instead of finiteness arguments

53

Kelley in a Nutshell

/|

54

Kelley in a Nutshell

/|

S

'ﬁm’gi ELQ
Cat

Kelley in a Nutshell

/|

S

54

Kelley in a Nutshell

/|

0 |-

The Mother of all Cutting-Plane Methods ...

at least for nonlinear problems!

J. Soc. INpUsT. APpL. MaTh.
Vol. 8, No. 4, December, 1960
Printed in U.S.4.

THE CUTTING-PLANE METHOD FOR SOLVING
CONVEX PROGRAMS*

J. E. KELLEY, Jr.t

1. Introduction. Although generally quite difficult to solve, constrained
minima problems are of perennial interest. There has been relatively little
success in finding general computational techniques for handling them.
However, useful techniques have been developed for certain small classes of
these problems. One interesting class involves minimizing a continuous
convex function on a closed convex set. It is known as the convex pro-
gramming problem and has been the subject of numerous studies in recent
years.! The main reason for success in this area appears to be that, with
convex functions, all local minima are global minima.

55

Kelley’s Cutting-Plane Method: Setting

Just for a moment: Forget about integrality constraints.

Convex Optimization

LI
st. xeQ

e Without loss of generality: linear objective function f(x) = d'x, d € R"

e Nonempty convex feasible set
Q:={x eR": ¢(x) <0},

i.e., ¢ : R" — R" is convex

56

Kelley’s Cutting-Plane Method: Setting

Assumptions

ld]] < o0
c is continuously differentiable

. |IVe(x)|l € K for a finite constant K and all x €

A w0 =

. There exists a compact polyhedral set

S={xeR":Ax>b}DQ, AcR™" becR"

57

Kelley’s Cutting-Plane Method: Setting

Definition
An extreme support to the graph of c is an (n + 1)-dimensional hyperplane
that intersects the boundary of the convex set

P={(x,y): x€S, y>c(x)}

and does not cut the interior of P.

58

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane
that intersects the boundary of the convex set

P={(x,y): x€S, y>c(x)}

and does not cut the interior of P.

For every x € S there exists an extreme support to the graph of ¢ since it is
convex.

58

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane
that intersects the boundary of the convex set

P={(x,y): x€S, y>c(x)}

and does not cut the interior of P.

For every x € S there exists an extreme support to the graph of ¢ since it is
convex.

Simply use Taylor’s first-order approximation of c.

58

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane
that intersects the boundary of the convex set

P={(x,y):x€S, y >c(x)}
and does not cut the interior of P.

For every x € S there exists an extreme support to the graph of ¢ since it is

convex.
Simply use Taylor’s first-order approximation of c.

For a point x° € S, the extreme support y = p(X;xO) is given by

p(x; x°) = c(xX°) + Vp(x; x°) T (x = x%), Vp(x;x°) = Ve(x°).

58

Kelley’s Cutting-Plane Method: Let’s Start!

1. Solve the relaxation min{f(x): x € S}.

e If the problem is infeasible, the original problem is infeasible.
e Otherwise, let x0 be the optimal solution.

2. If x® € Q, we are done. So let x° € S\ Q.

3. Since c is convex, we have

p(x;x°) < c(x) forallx€S.

59

Valid Inequalities

Definition

Consider the optimization problem

min f(x) st x€Q.

X

An inequality a' x < b is called a valid inequality (for Q) if it is satisfied for all
feasible points x € Q.

60

It really cuts

Lemma

Let xX° € S\ Q. The hyperplane defined by p(x; x°) = 0 separates the point x°
from the feasible set 2.

61

It really cuts

Lemma

Let xX° € S\ Q. The hyperplane defined by p(x; x°) = 0 separates the point x°
from the feasible set 2.

Proof.

e It holds p(x; x°) < ¢(x) for all x € S.
e Thus, if x € Q, we have p(x; x°) < ¢(x) < 0.
e Since x° ¢ Q, p(x°; x%) = ¢(x°) > 0. O

61

It really cuts

Lemma

Let xX° € S\ Q. The hyperplane defined by p(x; x°) = 0 separates the point x°
from the feasible set 2.

Proof.

e It holds p(x; x°) < ¢(x) for all x € S.
e Thus, if x € Q, we have p(x; x°) < ¢(x) < 0.
e Since x° ¢ Q, p(x°; x%) = ¢(x°) > 0. O

In this situation, the valid inequality of this hyperplane is called a cut.

61

Kelley’s Cutting-Plane Method: The Iteration

e Consider a sequence (Sk)x of convex sets with Sy C Sk_1 and consider the
sequence of convex optimization problems

min f(x) st x€ S

with optimal solutions x*. Then f(x*) > f(x*~*) holds.
o Let 5o =S and

Si =S nN{xeR": p(x;x°) <0}
e More general, we have the tightenings
Sk=Sk-1N{x eR": p(x;xk_l) < 0}.
We obtain ...
e points x* that minimize f(x) over Sk

o sequences (x¥)x and (fi)x with fi = d " x¥

62

Kelley’s Cutting-Plane Method: Goal

If (x*)x has a convergent subsequence that converges to a point x* € Q, then
the monotonically increasing sequence (fi)« converges to f(x*) and x™ is the
desired optimal solution.

63

Kelley’s Cutting-Plane Method: Convergence

o x* minimizes f(x) over Sy, i.e.,
c(x) + Vp(x*; x T (x* = x') <0

foralli=0,...,k—1.

e Moreover, if (xk)k has a subsequence converging to a point in €2, then
(c(x*))« needs to have a subsequence converging to 0.

e If not, there exists an r > 0 (independent of k) such that
r<c(x’) < Vp(x*;x')T(x' — x*) < K||x" — x|
forall i=0,... k—1.
e Thus, for every subsequence (x*¢), we obtain
kg _ ykey| > r 0
ot —) > % >

for all g < 2.

e Thus, (x*)x is not a Cauchy sequence, which is a contradiction since S is
compact.

64

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let ¢ be a continuous and convex function defined on S so that for every point
t € S, there exists an extreme support, y = p(x; t) to the graph of ¢ with
[Vp(x;t)|| < K for some finite constant K and for all x € S.

65

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let ¢ be a continuous and convex function defined on S so that for every point
t € S, there exists an extreme support, y = p(x; t) to the graph of ¢ with
[Vp(x; t)|| < K for some finite constant K and for all x € S. Furthermore, let
||[d]] < oo andlet® #Q={x€cR": ¢(x) <0} CS.

65

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let ¢ be a continuous and convex function defined on S so that for every point
t € S, there exists an extreme support, y = p(x; t) to the graph of ¢ with
[Vp(x; t)|| < K for some finite constant K and for all x € S. Furthermore, let
ld|| < oo and let) #Q = {x € R": ¢(x) <0} CS. If x* € S¥ solves

min f(x) st x&Sc fork=0,1,...

with So = S and

Sk =Sk-1N {x eR": p(x;x* 1) < 0} ,

65

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let ¢ be a continuous and convex function defined on S so that for every point
t € S, there exists an extreme support, y = p(x; t) to the graph of ¢ with
[Vp(x; t)|| < K for some finite constant K and for all x € S. Furthermore, let
ld|| < oo and let) #Q = {x € R": ¢(x) <0} CS. If x* € S¥ solves

min f(x) st x&Sc fork=0,1,...
with So = S and
Sk =Sk-1N {X eR": p(x;x* 1) < 0} ,

then the sequence (x*)y contains subsequences that converges to a
point x* € Q with f(x*) < f(x) for all x € Q.

65

From Convex Optimization to Convex MINLPs

In Kelley's method we solve LPs in every iteration, which are polyhedral

outer approximations of the original feasible set.

If we have a convex MINLP, simply solve MILPs instead of LPs.

e Every point x¥ then is the solution of the MILP with feasible set Si that
also incorporates the integrality constraints.

That's it?

66

From Convex Optimization to Convex MINLPs

e In Kelley's method we solve LPs in every iteration, which are polyhedral
outer approximations of the original feasible set.

e If we have a convex MINLP, simply solve MILPs instead of LPs.

e Every point x¥ then is the solution of the MILP with feasible set Si that
also incorporates the integrality constraints.

e That's it?
Yes; except for ugly technicalities

e We need that the vector ¢ and all constraints defining So, 51, Sz, ... only

have rational coefficients and constants.

e There are workarounds; see page 707 of the original Kelley paper.

66

Single-Tree vs. Multi-Tree Methods

Single-Tree
e Branch-and-bound
e Only a single search-tree is enumerated

e Every node of the search tree corresponds

to a continuous optimization problem

67

Single-Tree vs. Multi-Tree Methods

Single-Tree
e Branch-and-bound
e Only a single search-tree is enumerated

e Every node of the search tree corresponds
to a continuous optimization problem
Multi-Tree
o Kelley's Method for convex MINLPs

e An MILP is solved in every iteration

e Thus, every iteration corresponds to one search-tree

67

Is it effective?

. 2 2
min - xi —x st. 3xf —2xix0+x —1<0
x€ER:

The original numerical results from the Kelley paper

p(x; tr) 0 ® fr G(tr)

—16.00000z;+8.00000x:— 25 .00000 —2.00000 | 2.00000 |—4.00000 (23.00000
—7.37500z,+-5.12500z,— 8.19922 —0.56250 | 2.00000 |—2.56250 | 6.19922
—2.331572,+4-3.44386x:— 4.11958 0.27870 | 2.00000 |—1.72193 | 2.11978
—4.853412,4-2.73459z,— 3.43067 —0.52970 | 0.83759 |—1.36730 | 1.43067
—2.63930x,+2.426752,— 2.47792 —0.05314 | 1.16024 |—1.21338 | 0.47793
—0.410712,4-2.11690z,— 2.48420 0.42655 | 1.48499 |—1.05845 | 0.48419
—1.38975z,+4-2.07205z,— 2.13155 0.17058 | 1.20660 |—1.03603 | 0.13154
—1.972232,+4-2.04538z,— 2.04657 0.01829 | 1.04098 |—1.02269 | 0.04656
—2.678092,+2.01305z.— 2.06838 —0.16626 | 0.84027 |—1.00653 | 0.06838
—0.07348 | 0.92972 |—1.00321 | 0.01723

@W\IQUI%WNHOI g

68

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.3 Outer Approximation

69

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

70

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

<

70

Kelley: A Good Idea That Is Not So Good?

<

70

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Kelley: A Good Idea That Is Not So Good?

P

Who Would Even Implement This?

71

Who Would Even Implement This?

Well, we did . ..

71

uld Even Implement This?

Well, we did . ..

23 28.721478 29.782867 1.63e-01 5.14e+8@ 0.0 28.721478 29.782862 3.5637% 11.185 255.34s
24 28.919258 29.782867 9.23e-02 4.56e+80 0.0 28.919258 29.782862 2.8997% 11.155 267.53s
25 29.039661 29.782867 7.99e-02 5.34e+B0 0.0 29.039661 29.782862 2.4954% 11.17s 279.31s
26 20.134855 20.782867 6.32e-02 5.02e+00 0.0 20.134855 20.782862 2.1758% 11.20s 291.15s
27 29.231516 29.782867 4.44e-02 3.40e+0@ 0.0 29.231516 29.782862 1.8512% 11.24s 303.54s
28 29.346041 29.782867 4.36e-02 3.08e+00 0.0 29.346041 29.782862 1.4667% 11.295 316.88s
29 29.382217 29.782867 2.63e-02 3.40e+00 0.0 29.382217 29.782862 1.3452% 11.32s 328.39s
30 20.508040 20.782867 2.19e-02 2.14e+00 0.0 20.508040 20.782862 0.2e-01% 11.36s 340.82s
31 29.541662 29.782867 1.61le-02 2.00e+0@ 0.0 29.541662 29.782862 B8.le-61% 11.39s 353.03s
32 29.582359 29.782867 1.46e-02 2.40e+00 0.0 29.582359 29.782862 6.7e-01% 11.435 365.74s
33 29.613035 29.782867 7.94e-03 1.77e+00 0.0 29.613035 29.782862 5.7e-01% 11.46s 378.12s
34 20.693581 20.782867 6.27e-03 1.33e+00 0.0 20.693581 20.782862 3.0e-01% 11.49s 390.53s
35 29.706371 29.782867 3.29e-03 1.31e+0@ 0.0 29.706371 29.782862 2.6e-61% 11.51s 402.89s
36 29.758188 29.782867 6.22e-04 6.48e-81 0.0 29.758188 29.782862 8.3e-02% 11.545 415.265
37 29.769352 29.782867 1.88e-04 3.22e-01 0.0 29.769352 29.782862 4.5e-02% 11.57s 428.17s
38 20.775732 20.782867 1.92e-04 3.31le-01 0.0 20.775732 20.782862 2.4e-02% 11.60s 440.78s
39 29.776949 29.782867 5.80e-85 1.72e-81 0.0 29.775732 29.782862 2.4e-62% 11.40s 444.48s
40 29.781179 29.782867 8.63e-06 7.68e-82 0.0 29.781179 29.782862 5.6e-03% 11.41s 456.405

71

uld Even Implement This?

Well, we did . ..

(23] 26.721478 20.782867 1.63e-61 5.14e+00 0.6 28.721478 29.782862 3.5637% 11.10s 255.34s
24| 28.919258 29.782867 9.23e-02 4.56e+80 0.0 28.919258 29.782862 2.8997% 11.155 267.53s
25| 29.039661 29.782867 7.99e-02 5.34e+B0 0.0 29.039661 29.782862 2.4954% 11.17s 279.31s
26| 20.134855 20.782867 6.32e-02 5.02e+00 0.0 20.134855 20.782862 2.1758% 11.20s 291.15s
27| 29.231516 29.782867 4.44e-02 3.40e+8@ 0.0 29.231516 29.782862 1.8512% 11.24s 303.54s
28| 29.346041 29.782867 4.36e-02 3.08e+00 0.0 29.346041 29.782862 1.4667% 11.295 316.885
29| 29.382217 29.782867 2.63e-02 3.40e+00 0.0 29.382217 29.782862 1.3452% 11.32s 328.39s
30| 20.508049 20.782867 2.19e-02 2.14e+00 0.0 20.508040 20.782862 0.2e-01% 11.36s 340.82s
31| 29.541662 29.782867 1.61le-02 2.00e+B@ 0.0 29.541662 29.782862 B8.le-61% 11.39s 353.03s
32| 29.582359 29.782867 1.46e-02 2.40e+00 0.0 29.582359 29.782862 6.7e-01% 11.435 365.74s
33| 29.613035 29.782867 7.94e-83 1.77e+B0 0.0 29.613035 29.782862 5.7e-01% 11.46s 378.12s
34| 29.693581 20.782867 6.27e-03 1.33e+00 0.0 20.693581 20.782862 3.0e-01% 11.49s 390.53s
35| 29.706371 29.782867 3.29e-03 1.31e+8@ 0.0 29.706371 29.782862 2.6e-61% 11.51s 402.89s
36| 29.758188 29.782867 6.22e-04 6.48e-81 0.0 29.758188 29.782862 8.3e-02% 11.545 415.265
37| 29.769352 29.782867 1.88e-04 3.22e-01 0.0 29.769352 29.782862 4.5e-02% 11.57s 428.17s
38| 20.775732 20.782867 1.92e-04 3.31le-01 0.0 20.775732 20.782862 2.4e-02% 11.60s 440.78s
39| 29.776949 29.782867 5.80e-85 1.72e-81 0.0 29.775732 29.782862 2.4e-62% 11.40s 444.48s

8.63e-06 7.68e-02 0.8 29.781179 29.782862 5.6e-03% 11.41s 456.405

\49) 29.781179 29.782867

71

uld Even Implement This?

Well, we did . ..

23 29.782867 1.03e-01 5.14e+00 0.0 28.721478 29.782862 3.5637% 11.18s 255.34s
24 29.782867 9.23e-02 4.56e+00 0.0 28.919258 29.782862 2.8997% 11.155 267.53s
25 29.782867 7.99e-02 5.3de+00 0.0 29.039661 29.782862 2.4954% 11.17s 279.31s
26 |20.134855| 20.782867 6.32e-02 5.02e+00 0.0 20.134855 20.782862 2.1758% 11.20s 291.15s
27 |29.231516| 29.782867 4.44e-02 3.40e+0@ 0.0 29.231516 29.782862 1.8512% 11.24s 303.54s
28 |29.346041| 29.782867 4.36e-02 3.08e+00 0.0 29.346041 29.782862 1.4667% 11.295 316.88s
29 |29.382217| 29.782867 2.63e-02 3.40e+00 0.0 29.382217 29.782862 1.3452% 11.32s 328.39s
30 |20.508049| 20.782867 2.19e-02 2.14e+00 0.0 20.508040 20.782862 0.2e-01% 11.36s 340.82s
31 |29.541662| 29.782867 1.61le-02 2.00e+B@ 0.0 29.541662 29.782862 B8.le-61% 11.39s 353.03s
32 |29.582359| 29.782867 1.46e-02 2.40e+00 0.0 29.582359 29.782862 6.7e-01% 11.435 365.74s
33 |29.613035| 29.782867 7.94e-03 1.77e+00 0.0 29.613035 29.782862 5.7e-01% 11.46s 378.12s
34 |29.693581| 20.782867 6.27e-03 1.33e+00 0.0 20.693581 20.782862 3.0e-01% 11.49s 390.53s
35 |29.706371| 29.782867 3.29e-83 1.31e+0@ 0.0 29.706371 29.782862 2.6e-61% 11.51s 402.89s
36 |29.758188| 29.782867 6.22e-04 6.48e-81 0.0 29.758188 29.782862 8.3e-02% 11.545 415.265
37 |29.769352| 29.782867 1.88e-04 3.22e-81 0.0 29.769352 29.782862 4.5e-02% 11.57s 428.17s
38 |20.775732| 20.782867 1.92e-04 3.31le-01 0.0 20.775732 20.782862 2.4e-02% 11.60s 440.78s
39 |29.776949| 29.782867 5.80e-85 1.72e-81 0.0 29.775732 29.782862 2.4e-62% 11.40s 444.48s

8.63e-06 7.68e-02 0.8 29.781179 29.782862 5.6e-03% 11.41s 456.405

40 \29.781179) 29.782867

71

uld Even Implement This?

Well, we did . ..

23 28.721478 29.782867 5.14e+00 0.0 28.721478 29.782862 3.5637% 11.185 255.34s
24 28.919258 29.782867 4.56e+00 0.0 28.919258 29.782862 2.8997% 11.155 267.53s
25 29.039661 29.782867 5.34e+00 0.0 29.039661 29.782862 2.4954% 11.17s 279.31s
26 20.134855 29.782867 5.02e+00 0.0 20.134855 20.782862 2.1758% 11.20s 291.15s
27 29.231516 29.782867 3.400400 0.0 29.231516 29.782862 1.8512% 11.24s 303.54s
28 29.346041 29.782867 3.08e+00 0.0 29.346041 29.782862 1.4667% 11.295 316.88s
29 29.382217 29.782867 3.40e+00 0.0 29.382217 29.782862 1.3452% 11.32s 328.39s
30 20.508949 29.782867 2.14e+00 0.0 20.5080490 20.782862 0.2e-01% 11.36s 340.82s
31 29.541662 29.782867 2.00e+00 0.0 29.541662 29.782862 8.le-61% 11.39s 353.03s
32 29.582359 29.782867 2.40e+00 0.0 29.582359 29.782862 6.7e-01% 11.435 365.745
33 29.613035 29.782867 1.77e+06 0.0 29.613035 29.782862 5.7e-081% 11.46s 378.12s
34 29.693581 29.782867 1.33e+00 0.0 29.693581 20.782862 3.0e-01% 11.49s 390.53s
35 29.706371 29.782867 1.31e+00 0.0 29.706371 29.782862 2.6e-081% 11.51s 402.89s
36 29.758188 29.782867 6.48e-81 0.0 29.758188 29.782862 8.3e-02% 11.545 415.265
37 29.769352 29.782867 3.22e-01 0.0 29.769352 29.782862 4.5e-02% 11.57s 428.17s
38 20.775732 29.782867 3.31e-01 0.0 29.775732 20.782862 2.4e-02% 11.60s 440.78s
39 29.776949 29.782867 1.72e-01 0.0 29.775732 29.782862 2.4e-02% 11.40s 444.48s
40 29.781179 29.782867 7.68e-82 0.0 29.781179 29.782862 5.6e-83% 11.41s 456.405

71

uld Even Implement This?

Well, we did . ..

23 28.721478 20.782867 1.03¢-01 5.1de+08 [0.0) 28.721478 20.782862 3.5637% 11.18s 255.3ds
24 28.919258 29.782867 9.23e-02 4.56e+00 [0.0| 28.919258 29.782862 2.8997% 11.155 267.53s
25 29.039661 29.782867 7.99e-02 5.34e+00 [0.0| 29.839661 29.782862 2.4954% 11.17s 279.31s
26 20.134855 20.782867 6.32e-02 5.02e+00 |0.0| 20.134855 20.782862 2.1758% 11.20s 291.15s
27 29.231516 29.782867 4.44e-02 3.40e+00 [0.0| 29.231516 29.782862 1.8512% 11.24s 303.54s
28 29.346041 29.782867 4.36e-02 3.08e+00 [0.0| 29.346041 29.782862 1.4667% 11.295 316.885
29 29.382217 29.782867 2.63e-02 3.40e+00 [0.0| 29.382217 29.782862 1.3452% 11.32s 328.39s
30 20.508040 20.782867 2.19e-02 2.14e+00 |0.8| 20.508040 20.782862 0.2e-01% 11.36s 340.82s
31 29.541662 29.782867 1.6le-02 2.00e+0@ (0.0 29.541662 29.782862 8.le-61% 11.39s 353.03s
32 29.582359 29.782867 1.46e-02 2.40e+00 [0.0| 29.582359 29.782862 6.7e-61% 11.435 365.74s
33 29.613035 29.782867 7.94e-83 1.77e+00 [0.0| 29.613035 29.782862 5.7e-01% 11.46s 378.12s
34 20.693581 20.782867 6.27e-03 1.33e+00 |0.8| 29.693581 20.782862 3.0e-01% 11.49s 390.53s
35 29.706371 29.782867 3.29e-03 1.31e+0@ (0.0 29.706371 29.782862 2.6e-61% 11.51s 402.89s
36 29.758188 29.782867 6.22e-04 6.48e-01 [0.0| 29.758188 29.782862 8.3e-62% 11.545 415.265
37 29.769352 29.782867 1.88e-04 3.22e-01 [0.0| 29.769352 29.782862 4.5e-02% 11.57s 428.17s
38 20.775732 20.782867 1.92e-04 3.31le-01 |0.8| 20.775732 20.782862 2.4e-02% 11.60s 440.78s
39 29.776949 29.782867 5.80e-85 1.72e-01 [0.8| 29.775732 29.782862 2.4e-62% 11.40s 444.48s
40 29.781179 29.782867 8.63e-06 7.68e-02 \.) 20.781179 20.782862 5.6e-03% 11.415 456.405

71

uld Even Implement This?

Well, we did . ..

23 28.721478 29.782867
24 28.919258 29.782867
25 29.039661 29.782867

721478 29.782862
19258 29.782862
1661 29.782862

.5637% 11.10s 255.34s
.8997% 11.155 267.535
.4954% 11.17s 279.31s

26 20.134855 29.782867 32e 855 29.782862 .1758% 11.20s 201.15s
27 29.231516 29.782867 44e-02 29.782862 1.8512% 11.24s 303.54s
28 29.346041 29.782867 29.782862 1.4667% 11.295 316.085
29 29.382217 29.782867 63e-02 29.782862 1.3452% 11.32s 328.39s

30 20.508949 29.782867
31 29.541662 29.782867
32 29.582359 29.782867
33 29.613035 29.
34 29.693581 29.
35 29.706371 29.
36 29.758188 29.
37 29.769352 29.
38 29.775732 29.
39 29.776949 29.
40 29.781179 29.

.782862
6le-82 2.0 =82862 8.le-81% 11.39s 353.63s
.7e-01% 11.435 365.745
11.46s 378.12s
11.49s 390.53s
11.51s 402.89s
11.545 415.265
11.57s 428.17s
11.60s 440.78s
11.40s 444.48s
11.415 456.405

GNRRNN BB O N0
w
o
o
©
N~

3
2
2
2
1
1
1
9.2e-01% 11.36s 340.82s
8
3
5
3
2
3

71

Kelley 2.0: Outer Approximation

Drawbacks of Kelley's method

e Linear convergence, many iterations (runtimel!)

e Almost linear dependent inequalities (numerics!)

Resolved by Outer Approximation

e Duran and Grossmann (1986)
e Fletcher and Leyffer (1994)

72

Kelley 2.0: Outer Approximation

73

Kelley 2.0: Outer Approximation

Same instance as before
but with some outer-approximation magic applied ...

73

Kelley 2.0: Outer Approximation

Same instance as before
but with some outer-approximation magic applied ...

1 -76.197311 29.782862 7.19e+02 ©0.00e+00 ©.0 -76.197311 29.782862 355.84% 3.82s 3.82s
2 29.782867 29.782862 1.96e-11 6.65e+82 0.0 29.732867 29.782862 -1.5e-05% 8.31s 16.63s

73

From Kelley ...

1. Solve an MILP relaxation to obtain x*

2. Add linear approximation around x™ to the MILP relaxation

3. Repeat until e-tolerance is fulfilled

74

... to Outer Approximation

1. Solve an MILP relaxation to obtain x and lower bound ¢

2. Solve an NLP with fixed integers x; to obtain x™ and upper bound
& = min{®, f(x*)}

3. Update the MILP relaxation

e Add Kelley cutting plane for x*
e Exclude integer-feasible solution x/

4. Repeat until ¢ > ¢

75

... to Outer Approximation

1. Solve an MILP relaxation to obtain x and lower bound ¢

2. Solve an NLP with fixed integers x; to obtain x™ and upper bound
& = min{®, f(x*)}

3. Update the MILP relaxation

e Add Kelley cutting plane for x*
e Exclude integer-feasible solution x/

4. Repeat until ¢ > ¢

MILP fix xi NLP
¢ add cutting plane for x* ¢

and exclude x;"

75

... to Outer Approximation

1. Solve an MILP relaxation to obtain x and lower bound ¢

2. Solve an NLP with fixed integers x; to obtain x™ and upper bound
& = min{®, f(x*)}

3. Update the MILP relaxation

e Add Kelley cutting plane for x*
e Exclude integer-feasible solution x/

4. Repeat until ¢ > ¢

MILP fix xi NLP
¢ add cutting plane for x* ¢

and exclude x;"

75

How to Exclude Integer Solutions?

76

How to Exclude Integer Solutions?

Simple idea: No-good-cuts

dooxi+ > (1-x)=1

i€l:x;=0 i€l:x;=1

76

How to Exclude Integer Solutions?

Simple idea: No-good-cuts

dooxi+ > (1-x)=1

i€l:x;=0 i€l:x;=1

No good!

76

How to Exclude Integer Solutions?

Simple idea: No-good-cuts

dooxi+ > (1-x)=1

i€l:x;=0 i€l:x;=1

No good!

But: Duran and Grossmann had a simple and good idea

Mathematical Programming 36 (1986) 307-339
North-Holland

AN OUTER-APPROXIMATION ALGORITHM FOR A CLASS
OF MIXED-INTEGER NONLINEAR PROGRAMS

Marco A. DURAN™ and Ignacio E. GROSSMANN
Department of Chemical Engineering, Carncgic-Mellon University, Pitishurgh, PA 15213, USA

Received 28 May 1954

76

How to Exclude Integer Solutions?

Assume you have an integer point x{ and assume that the subproblem

T

st. c(x)<0 (S(:))
xeX
X = X{

has a solution x’

v

How to Exclude Integer Solutions?

Assume you have an integer point x{ and assume that the subproblem

T

st. c(x)<0 (S(:))
xeX
X = X{

has a solution x’

Important technicality: a constraint qualification needs to hold at x/

v

Recap: Kelley’s Cuts

Taylor's first-order approximation

p(xix%) = c(x*) + Ve(x*) T (x - x°)

1. Since c is convex, p(x; x°) < 0 is a valid inequality for all x € Q

2. For x° € S\ Q, p(x; x°) < 0 cuts off x°

78

The Simple and Good Idea

Add first-order approximations for solutions x/ of the subproblem (S(x/))

p(xix1) = (') + Ve(x) (x - xI)

1. Since c is convex, p(x; x/) < 0'is a valid inequality for all x € Q

2. For x/, p(X;Xj) < 0 does not cut off x/!

79

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

TQ(X) = {d €eR": H(Xk)k S Q,(tk)k € R>p such that

K
. k . .o X=X
lim x" =x, lim t, =0, and lim =d
k— 00 k— o0 k—00 tx

80

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

TQ(X) = {d €eR": H(Xk)k S Q,(tk)k € R>p such that

K
. k . .o X=X
lim x" =x, lim t, =0, and lim =d
k— o0 k— o0 k— o0 ti

In other words: Tgo(x) contains all directions d that are tangential to Q in
x €Q

80

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

TQ(X) = {d €eR": H(Xk)k S Q,(tk)k € R>p such that

K
. k . .o X=X
lim x" =x, lim t, =0, and lim =d
k— o0 k— o0 k— o0 ti

In other words: Tgo(x) contains all directions d that are tangential to Q in
x €Q

In other words: “Tq(x) contains all feasible directions approaching x”

80

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

X
(:,)b«\ L0

Wid-=0

X

81

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

X
(:,)b«\ L0

ﬂu)o

X

81

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

X
(:,)b«\ L0

NMMO

X

81

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

X
(:,)b«\ L0

NMMO

X

81

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

X
3{»«\ L0

NMMO

X

81

Cones in Nonlinear Optimization 101

Tangential cone of Q in x

%

3&\ L0 /];_ ()é)

N

X

81

Cones in Nonlinear Optimization 101

Linearized cone of Q2 in x

To' :=={d €R":d " Vci(x) <0, i € A(x)}

82

Cones in Nonlinear Optimization 101

Linearized cone of Q2 in x

To' :=={d €R":d " Vci(x) <0, i € A(x)}

X
(:,)U\ 0

W) =0

X

82

Cones in Nonlinear Optimization 101

Linearized cone of Q2 in x

To' :=={d €R":d " Vci(x) <0, i € A(x)}

X
(:,)U\ 0

/LXLO
\

X

82

Cones in Nonlinear Optimization 101

Linearized cone of Q2 in x

To' :=={d €R":d " Vci(x) <0, i € A(x)}

X
(:,)U\ 0

W) =0

X

82

Cones in Nonlinear Optimization 101

Linearized cone of Q2 in x

To' :=={d €R":d " Vci(x) <0, i € A(x)}

X
(:,)U\ 0

W) =0

X

82

Cones in Nonlinear Optimization 101

Linearized cone of Q2 in x

To' :=={d €R":d " Vci(x) <0, i € A(x)}

4

g 40 /];LWM

22

X

82

Cones in Nonlinear Optimization 101

Obviously, Ta(x) = T&"(x) holds in our example

83

Cones in Nonlinear Optimization 101

Obviously, Ta(x) = T&"(x) holds in our example

Abadie Constraint Qualification: A feasible point x € Q fulfills the ACQ if
Ta(x) = T&" holds

83

Cones in Nonlinear Optimization 101

Obviously, Ta(x) = T&"(x) holds in our example

Abadie Constraint Qualification: A feasible point x € Q fulfills the ACQ if
Ta(x) = T&" holds

Optimality condition: If x* is a local solution and f is continuously
differentiable, then

Vi(x*)'d>0 forall de Ta(x")

83

The Simple and Good Idea

Add first-order approximations for solutions x/ of the subproblem (S(x/))

p(xix1) = (') + Ve(x) (x - xI)

1. Since c is convex, p(x; x/) < 0'is a valid inequality for all x € Q

2. For x/, p(X;Xj) < 0 does not cut off x/

84

Where the Magic Happens

The set of possible integer assignments

X = {x € X : x solves (S(x!))}

85

Where the Magic Happens

The set of possible integer assignments

X = {x € X : x solves (S(x!))}

Assume that the Abadie Constraint Qualification holds for all x € X

85

Where the Magic Happens

The set of possible integer assignments

X = {x € X : x solves (S(x!))}

Assume that the Abadie Constraint Qualification holds for all x € X

Let X* C X and consider the master problem
min
x€ER",neER
st. F(X)+ V)T (x—x) <n, ek
() +Ve(d) (x—x) <0, v exk, (M(k))
x e X,

xi €%, i€l

85

Where the Magic Happens

Assume x to be a solution of (M(k)) such that x; = x{ for a x* € X*

86

Where the Magic Happens

Assume x to be a solution of (M(k)) such that x; = x{ for a x* € X*

e We already solved the subproblem (S(x;))

86

Where the Magic Happens

Assume x to be a solution of (M(k)) such that x; = x{ for a x* € X*

e We already solved the subproblem (S(x;))

e x must fulfill

f(xf) + Vf(XZ)T(X - xé) <n
c(x) +Ve(xH T (x—x) <0

)

IA

86

Where the Magic Happens

If c;/(x) < 0 is not active, then any direction is feasible. In particular:

(x —x) e T&(xY).

87

Where the Magic Happens

If c;/(x) < 0 is not active, then any direction is feasible. In particular:

(x —x) e T&(xY).

If ci(x“) = 0 active, then

Va(x)T(x —x") <0 = (x—x") e T8 (xH.

87

Where the Magic Happens

If c;/(x) < 0 is not active, then any direction is feasible. In particular:

(x —x) e T&(xY).

If ci(x“) = 0 active, then

Va(x)T(x —x") <0 = (x—x") e T8 (xH.

Since the ACQ holds at x*, we have

(x — xe) S TQ(XE)

87

Where the Magic Happens

From (x — x*) € Ta(x") we know

V)T (x=x) >0

88

Where the Magic Happens

From (x — x*) € Ta(x") we know

V)T (x=x) >0

Because x is feasible for the master problem

FxX)+ VI (x—xY<n <= Ffx"<ny

88

Where the Magic Happens

From (x — x*) € Ta(x") we know

V)T (x=x) >0

Because x is feasible for the master problem

FxX)+ VI (x—xY<n <= Ffx"<ny

Because x* € Q = & < f(x")

88

Where the Magic Happens

From (x — x*) € Ta(x") we know

V)T (x=x) >0

Because x is feasible for the master problem

FxX)+ VI (x—xY<n <= Ffx"<ny

Because x‘ € Q = ¢ < f(x")

Altogether, this gives
O<F(x)<n=¢

88

We Just Proved

Lemma
Whenever an integer solution of the master problem appears for the second

time, then the corresponding objective function value is greater or equal to the

best upper bound.

89

We Just Proved

Lemma
Whenever an integer solution of the master problem appears for the second

time, then the corresponding objective function value is greater or equal to the

best upper bound.
Again, in other words:

At most, we need to check one integer solution twice.

We indeed “cut” the integer solutions.

89

There Is One Thing Left

What if a subproblem (S(x/)) is infeasible?

90

There Is One Thing Left

What if a subproblem (S(x/)) is infeasible?

Duran and Grossmann add no-good-cuts, but this is still no good ...

90

There Is One Thing Left

What if a subproblem (S(x/)) is infeasible?
Duran and Grossmann add no-good-cuts, but this is still no good ...

Fletcher and Leyffer (1994) have a solution

Mathematical Programming 66 (1994) 327-349

Solving mixed integer nonlinear programs by outer
approximation™*

Roger Fletcher, Sven Leyffer*

Department of Mathematics and Computer Science, University of Dundee, Dundee DD 4HN, Scotland, UK

Received 15 June 1992; revised manuscript received 1 December 1994

90

Infeasible Subproblems

If a subproblem (S(x/)) is infeasible, then solve the feasibility problem

min Z wic (x)

xERM
ieJ+
st. c(x)<0, ieJ (F(x))
xeX
X| = X,J
with
o ¢ (x) = max{ci(x),0}

using the weights w; > 0 we can model, e.g., the ¢1 or {o, norm

e J a set of constraints that can be fulfilled

e J* the set of infeasible constraints

Interpretation: the feasibility problem minimizes the infeasibility

91

Infeasible Subproblems

Let (S(x/)) be infeasible and x/ be a solution of the feasibility problem (F(x/))

Fletcher and Leyffer proved that all x with x; = x{ violate the constraints
fOI) + VF() T (x — X)) <
() +Ve(x) T (x—x) <0

92

Outer Approximation

1: Given x°, set ¢ < —o00, ® + 400, j + 0, and XL+ @

2: while ¢ < ¢ do

3. Solve (S(x})) or (F(x})) and let the solution be x/

4 if (S(x))) is feasible and f(x/) < ® then

5 Update current best point x* < x/ and ® <« f(x’)

6: end if

7. Linearize f and c at x/ and set X7 «+ A7t U {x/}

8. Solve (M(})) and let the solution be x/™*. Set ¢ « f(x/™) and j + j+1
9: end while

93

Outer Approximation

Theorem:

If the Abadie constraint qualification holds at the solution of every
subproblem (S(x/)) and if the number of integer points in X is finite, then the
outer-approximation algorithm terminates in a finite number of steps with an
optimal solution or with an indication that the problem is infeasible.

94

Outer Approximation

Theorem:

If the Abadie constraint qualification holds at the solution of every
subproblem (S(x/)) and if the number of integer points in X is finite, then the
outer-approximation algorithm terminates in a finite number of steps with an
optimal solution or with an indication that the problem is infeasible.

Proof:
Follows directly from the previous slides.

94

Extensions

e Hotstart the master problems: initial values, cutoff values, etc.
e Stop master problem with first “improving solution”

e Add linearization cuts for all feasible points of the master problem

that we encounter while solving the master problem

95

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

e Invented by Jacques Benders in 1962

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

e Invented by Jacques Benders in 1962
e Algorithm for problems with a special structure

e Problem has “easy” and “complicated” variables
e Fixing the complicated variables results in a linear problem

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

e Invented by Jacques Benders in 1962
e Algorithm for problems with a special structure

e Problem has “easy” and “complicated” variables
e Fixing the complicated variables results in a linear problem

e Generalized by Geoffrion in 1972 to nonlinear subproblems

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

e Invented by Jacques Benders in 1962
e Algorithm for problems with a special structure

e Problem has “easy” and “complicated” variables

e Fixing the complicated variables results in a linear problem
e Generalized by Geoffrion in 1972 to nonlinear subproblems
e Algorithmic idea

e Decompose the variables

e Relaxed master problem over the complicated variables

e Subproblem with fixed complicated variables

e Successively derive cuts from the subproblem by duality theory

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

e Invented by Jacques Benders in 1962
e Algorithm for problems with a special structure

e Problem has “easy” and “complicated” variables

e Fixing the complicated variables results in a linear problem
e Generalized by Geoffrion in 1972 to nonlinear subproblems
e Algorithmic idea

e Decompose the variables

e Relaxed master problem over the complicated variables

e Subproblem with fixed complicated variables

e Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

F(X) + V()T (x = x) <,
() + Ve(d) T (x — x') <0

97

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

F(X) + V()T (x = x) <,
() + Ve(d) T (x — x') <0

Generalized Benders cut

Flol) + (v/fwwiw/d) (=) <7

i=1

97

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

F(X) + V()T (x = x) <,
() + Ve(d) T (x — x') <0

Generalized Benders cut

Flol) + (v/fwwiw/d) (=) <7

i=1

Benders cuts are “weighted” outer approximation cuts

97

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

F(X) + V()T (x = x) <,
() + Ve(d) T (x — x') <0

Generalized Benders cut

Flol) + (v/fwwiw/d) (=) <7

i=1
Benders cuts are “weighted” outer approximation cuts

Benders cuts are dense and weaker than outer approximation cuts

97

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.4 LP/NLP-Based Branch-and-Bound

98

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

99

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound

e Get rid of the integer variables by branching and solve only NLP relaxations

e Single-tree but many NLPs

99

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound
e Get rid of the integer variables by branching and solve only NLP relaxations
e Single-tree but many NLPs

Rationale of Kelley

e Approximate nonlinearities by only solving MILPs

e Multi-tree but no NLPs

99

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound
e Get rid of the integer variables by branching and solve only NLP relaxations
e Single-tree but many NLPs
Rationale of Kelley
e Approximate nonlinearities by only solving MILPs
e Multi-tree but no NLPs
Rationale of Quter Approximation

e Approximate nonlinearities and get rid of integrality constraints by fixing
e Solve MILPs and NLPs alternatingly
e Multi-tree with few NLPs

99

Outer Approximation vs. Branch-and-Bound

Searching multiple branch-and-bound trees sounds inefficient

100

Outer Approximation vs. Branch-and-Bound

Searching multiple branch-and-bound trees-setnds-is inefficient

100

Outer Approximation vs. Branch-and-Bound

?

Outer Approximation

101

Best of Both Worlds: LP/NLP-Based Branch-and-Bound

e Introduced by Quesada and Grossmann (1992)

e Can be seen as a hybrid algorithm between nonlinear branch-and-bound
and outer approximation

102

Best of Both Worlds: LP/NLP-Based Branch-and-Bound

e Introduced by Quesada and Grossmann (1992)

e Can be seen as a hybrid algorithm between nonlinear branch-and-bound
and outer approximation

Rationale

e Relax nonlinearities and integrality constraints
e Branch on integralities and solve LPs at every branch-and-bound node
e Whenever a node solution is integral, solve the corresponding NLP

e Globally add the outer-approximation cuts for this NLP solution

102

Best of Both Worlds: LP/NLP-Based Branch-and-Bound

1: Given x}, set ¢ < —o0, ® < 400, j « 0, X/ 0,
initialize the set of open node problems O « {LP(A’, —oc0, 00)}
2: while O # () do
3 Pickan LP: O = O\ {LP(AY,], u)}
4. Solve LP(X7, 1, u) and let its solution be x(*)
5. if LP(XY, 1, u) is infeasible or f(x"*)) > & then
6 Node can be pruned
7. elseif x,("’”) is integral then
8 Set x/ = x,("’”) and solve (S(x/)) or (F(x})) and let its solution be x/
9: Linearize f and c at x/ and set X/ « A7 U {x/}
10: if (S(x/)) is feasible and f(x/) < ® then

11 Update best point x* +— x/ and ® «+ f(x’)
12: end if

13: Re-add the LP: O = O U {LP(AY™ 1, u)}

14: Setj<+j+1

15: else

16: Branch on a fractional variable and update O
17 end if

18: end while 103

LP/NLP-Based Branch-and-Bound in Practice

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

e Add cuts also for points that are not integer-feasible

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

e Add cuts also for points that are not integer-feasible

e See Abishek et al. (2010) and Bonami et al. (2008) for details

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

e Add cuts also for points that are not integer-feasible

e See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

e Add cuts also for points that are not integer-feasible

e See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends ...

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

e Add cuts also for points that are not integer-feasible

e See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends ...

e Limitations of MILP solvers (callbacks!)

104

LP/NLP-Based Branch-and-Bound in Practice

e Should be implemented within modern MILP solvers

e Advanced MILP search (strong branching, adaptive node selection)
e Effective cut management

e Add cuts also for points that are not integer-feasible

e See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends ...

e Limitations of MILP solvers (callbacks!)

e Problem-specific

104

3. MILP-Based Reformulations: Overview

3. MILP-Based Reformulations

105

The Psychology of Science

ABRAHAM H. MASLOW

Law of the instrument

“If all you have is a hammer,
everything looks like a nail.”
— Abraham Maslow, 1966

106

The Law of the Instrument in the MILP World

e Discrete optimizers like integer variables and linear problems

e Problem: nonlinearities

107

The Law of the Instrument in the MILP World

e Discrete optimizers like integer variables and linear problems
e Problem: nonlinearities

e Remedy: linearization

107

The Law of the Instrument in the MILP World

e Discrete optimizers like integer variables and linear problems
e Problem: nonlinearities

e Remedy: linearization

107

The Law of the Instrument in the MILP World

e Discrete optimizers like integer variables and linear problems
e Problem: nonlinearities

e Remedy: linearization

107

The Law of the Instrument in the MILP World

e Discrete optimizers like integer variables and linear problems
e Problem: nonlinearities

e Remedy: linearization

107

The Law of the Instrument in the MILP World

e Discrete optimizers like integer variables and linear problems
e Problem: nonlinearities

e Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the NLP World

e Continuous optimizers like nonlinear problems
e Problem: integrality constraints

e Remedy: continuous reformulation

108

The Law of the Instrument in the NLP World

e Continuous optimizers like nonlinear problems
e Problem: integrality constraints

e Remedy: continuous reformulation

Continuous Reformulation

Replace integer variable with

e one or more continuous variables and

e one or more (potentially nonlinear) constraints.

108

The Law of the Instrument in the NLP World

e Continuous optimizers like nonlinear problems
e Problem: integrality constraints

e Remedy: continuous reformulation

Continuous Reformulation

Replace integer variable with

e one or more continuous variables and

e one or more (potentially nonlinear) constraints.

Resulting problem is continuous:

Application of nonlinear optimization techniques

108

Drawbacks and Advantages of the NLP Approach

Drawbacks

e Continuous reformulation
— nonconvex problems

e NLP methods only yield
local minima

e NLP methods are not as stable
as MILP methods

e Badly suited for problems with
many discrete variables

109

Drawbacks and Advantages of the NLP Approach

Drawbacks Advantages
e Continuous reformulation e Significantly faster running
— nonconvex problems times compared to the MILP
e NLP methods only yield approach

local minima i .
e Well suited for problems with

e NLP methods are not as stable
as MILP methods

only a few discrete variables
but many nonlinearities
e Badly suited for problems with e Physical accuracy is easier to

many discrete variables achieve

109

Linearization of Nonlinear Functions

The easy case ...

Separable Functions

A function ¢ : RY — R is called separable if it can be written as a sum of
univariate functions ¢; :R - R, i=1,...,d:

d(x, ..., xa) = Z¢f(><i)-

110

1d Functions: Initial Situation

Given

Continuous and univariate function

¢:R—R.

Goal

Integration of a piecewise linearization f of ¢ over a given finite
interval [a, b] C R into an MILP model

The idea dates back to Markowitz and Manne (1957) as well as Dantzig (1960)

111

S
2
=
(1]
=
52
(7]
s
=
[

1d Functions:

112

1d Functions: Convex Combination Method

Idea: Express the function value at point x as a convex combination of the
function values at the neighboring sampling points.

113

1d Functions: Convex Combination Method

Idea: Express the function value at point x as a convex combination of the
function values at the neighboring sampling points.

Set zp = z,41 = 0 and

x:i/\;xn yzi)uy;.,
i—0 i=0
Z)\,’ =].7 izi = 1,
i i—1

i=0
N < zi+ ziq1 forall i=0,...,n,
Ai>0 forall i=0,...,n,
z €{0,1} foralli=1,...,n.

113

—_
Q

=3
=
<
X
L

N
=]
o
=
L
=
=
2
L
©
=
2
=
o
9]
x
o
>
=
<}
9
7]
=
.2
Ll
Q
=
=
(T
o
i

A4

A3

A2

AL

Ao

Z4

Z3

Z1

114

1d Functions: Convex Combination Method (Example)

f(x)
DA R TR ° denotes the
! active interval i + 1
)N TE T T T PP P T PP PRI 4 .:]
1 1 e \i,\iy1>0ifxe [X,',X,‘+1]
y]_ f f ’
1 1 1 . . —
22 EEEEEEEEETEE AT : / : : ° /\’ + /\’*1 =1
YO benrenens : ! ' ' ' e \j=0forallj¢{ii+1}
' ' ' : : e x = " Aixii convex
X X X : X x combination of x values
X0 X1 X2 X3 X4

o y= Z?:o Aiyi: convex
combination of y values
Z1 z3 Zs

114

1d Functions: Convex Combination Method (Example)

f(x)
DA R TR ° denotes the
! active interval i + 1
)N TE T T T PP P T PP PRI 4 .:]
1 1 e \i,\iy1>0ifxe [X,',X,‘+1]
y]_ f f ’
1 1 1 . . —
22 EEEEEEEEETEE AT : / : : ° /\’ + /\’*1 =1
YO benrenens : ! ' ' ' e \j=0forallj¢{ii+1}
' ' ' : : e x = " Aixii convex
X X X : X x combination of x values
X0 X1 X2 X3 X4

o y= Z?:o Aiyi: convex
combination of y values
Z1 z3 Zs

By the way: the A; variables form an SOS-2 set

114

SOS-1 Type Binary Variables and Branching

Why are SOS-1 type binary variables so nice?

115

SOS-1 Type Binary Variables and Branching

Why are SOS-1 type binary variables so nice?

e Think of an integer variable z; € Z and a fractional node solution, e.g.,
Zi = 42.5

e Branching on this variable leads to two subproblems with the additional
constraints

o z; <42
e z; > 43

e Branching on fractional binary variables leads to two new subproblems
with the fixations zi =0 and z; =1

. and that's it!

115

SOS-1 Type Binary Variables and Branching

Why are SOS-1 type binary variables so nice?

e Think of an integer variable z; € Z and a fractional node solution, e.g.,
Zi = 42.5

e Branching on this variable leads to two subproblems with the additional
constraints

o z; <42
e z; > 43

e Branching on fractional binary variables leads to two new subproblems
with the fixations zi =0 and z; =1

. and that's it!

For an SOS-1 set of binary variables z € {0,1}" with >-7 , z =1,
a branching with z; = 1 fixes all other variables to 0!

115

1d Functions: Incremental Method

Idea: A value x € [xi—1,x;] can be written as

x = xj—1 + (xi — xi—1)di, ¢; € [0,1].

116

1d Functions: Incremental Method

Idea: A value x € [xi—1,x;] can be written as

x = xj—1 + (xi — xi—1)di, ¢; € [0,1].

Model of the incremental method:

n
x=x0+ Y (xi = xi1)d, y = yo-i-z - Yi-1)
i-1
zi < i foralli=1,...,n—1,
div1 < zi foralli=1,...,n—1,
z €{0,1} foralli=1,...,n—1,
061<1,6,>0

116

1d Functions: Incremental Method

Idea: A value x € [xi—1,x;] can be written as

x = xj—1 + (xi — xi—1)di, ¢; € [0,1].

Model of the incremental method:

n
x=x0+ Y (xi = xi1)d, y = yo-i-z - Yi-1)
i-1
zi < i foralli=1,...,n—1,
div1 < zi foralli=1,...,n—1,
z €{0,1} foralli=1,...,n—1,
061<1,6,>0

Filling condition: dj41 < z1 < §; = (di;1 > 0= 4§ =1)

116

1d Functions: Incremental Method (Example)

o x=x0+ > i (xi —xi—1)d;
= = 17 2 O'
03=1034=0

021:1,22223224:0

117

Comparison: Convex Combination Method vs. Incremental Method

Setting

Minimization of a piecewise linear function subject to linear constraints

118

Comparison: Convex Combination Method vs. Incremental Method

Setting

Minimization of a piecewise linear function subject to linear constraints

Properties
e LP relaxation of the incremental method
always gives an integer-feasible point
e This is not the case for the convex combination method

e Polyhedron of the incremental method is strictly contained in the
polyhedron of the convex combination method

118

Piecewise Linear Modeling: Pros & Cons

Pros

e Enables us to model nonlinear functions approximately in an MILP

119

Piecewise Linear Modeling: Pros & Cons

Pros

e Enables us to model nonlinear functions approximately in an MILP

Cons

e Linearization error: Let ¢ € C*([x0, xs]) be the given nonlinear function
and let f be the corresponding piecewise linear approximation over [xo, x,].
Then, we have

llp — flloo </72”‘ZS ”‘”7 h:= max {xi — xi_1}.

=1,...,n

119

Piecewise Linear Modeling: Pros & Cons

Pros

e Enables us to model nonlinear functions approximately in an MILP

Cons

e Linearization error: Let ¢ € C*([x0, xs]) be the given nonlinear function
and let f be the corresponding piecewise linear approximation over [xo, x,].
Then, we have

16"]lo
8)

6= Fllw < hi= max Lo = xim

]

e Error can be controlled by h

119

Piecewise Linear Modeling: Pros & Cons

Pros

e Enables us to model nonlinear functions approximately in an MILP

Cons

e Linearization error: Let ¢ € C*([x0, xs]) be the given nonlinear function
and let f be the corresponding piecewise linear approximation over [xo, x,].
Then, we have

16"]lo
8)

6= Fllw < hi= max Lo = xim

]
e Error can be controlled by h

e Problem: Reduction of h — more binary variables!

119

Piecewise Linear Modeling: Pros & Cons

Pros

e Enables us to model nonlinear functions approximately in an MILP
Cons

e Linearization error: Let ¢ € C*([x0, xs]) be the given nonlinear function
and let f be the corresponding piecewise linear approximation over [xo, x,].
Then, we have

16"]lo
8)

6= Fllw < hi= max Lo = xim

e Error can be controlled by h
e Problem: Reduction of h — more binary variables!

e Compromise between accuracy and tractability /practability

119

... and there’s a lot more!

Multiple-Choice Method
e Disaggregated Convex Combination Method

Logarithmic Model

120

What if the nonlinearity is not separable?

Consider the reformulation
2 2
X1X2 =Y1 —)2
with

1 1
n=s0atx), n=3ba-x)

and yi,y» € R.

121

What if the nonlinearity is not separable?

Other idea: take the logarithm

The constraint

y = X1X2

with x1,x2 > 0 is equivalent to

In(y) = In(x1) + In(x2).

122

What if the nonlinearity is not separable?

Other idea: take the logarithm

The constraint
Yy = X1X2

with x1,x2 > 0 is equivalent to

In(y) = In(x1) + In(x2).

However, ...

e there is no systematic way to reduce multivariate to univariate functions

e errors introduced by piecewise linearizing the separate univariate functions

may accumulate and amplify

122

Further Topics

e How to obtain the piecewise linear approximations

e Approximation theory
e Best choice of break points can itself be considered as an optimization
problem that needs to be solved up-front

e Multivariate linearizations

e Convex combination method
e Incremental method

e From piecewise linear approximations to piecewise linear relaxations

123

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.1 Generic Relaxation Strategies
4.2 Spatial Branch-and-Bound
4.3 Bound Tightening

124

Nonconvex MINLP: What’s the challenge?

min f(x)
st. ¢c(x) <0, xeX, x;€Z foralliel

Problem
e f and/or at least one of the ¢; are nonconvex
e Feasible set is nonconvex ... even after relaxing the integrality constraints

e Local solutions do not define valid bounds

Very hard problem

125

Piecewise Linearization

We already know a solution approach: piecewise linear approximations

Replace nonlinear and nonconvex functions
with piecewise linear approximations

Allows to use MILP solvers

e If possible, use separability of multivariate and nonconvex functions

2 goals:

e Compute a sufficiently accurate approximation
e Minimize the number of additionally required binary variables

Methods

e Convex combination method
e Incremental method

e Multiple choice method

°

126

What about using branch-and-bound “directly”?

x,elt] < Xz

127

What about using branch-and-bound “directly”?

x,elt] < Xz

127

What about using branch-and-bound “directly”?

X, etﬁr"‘j

127

What about using branch-and-bound “directly”?

X, etﬁr"‘j

127

What about using branch-and-bound “directly”?

x,elt] < Xz

127

What about using branch-and-bound “directly”?

x,elt] < Xz

127

What about using branch-and-bound “directly”?

x,elt] < Xz

127

The Nonconvex-MINLP-To-Do-List

We need to know how . ..

1. ... to automatically construct polyhedral
and/or convex relaxations of nonconvex constraints

— This leads to lower bounds on the optimal objective function value
2. ... to set up a branching on continuous variables

— This leads to a procedure for partitioning the feasible set of a subproblem

128

The Nonconvex-MINLP-To-Do-List

We need to know how . ..

1. ... to automatically construct polyhedral
and/or convex relaxations of nonconvex constraints

— This leads to lower bounds on the optimal objective function value
2. ... to set up a branching on continuous variables

— This leads to a procedure for partitioning the feasible set of a subproblem

Open question: Does this lead to finite termination/convergence?

128

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.1 Generic Relaxation Strategies

129

Factorable Functions

Definition
A function f : R" — R is called factorable if it can be written as a sum of
products of univariate functions out of a given set O, whose arguments are

variables, constants, or other factorable functions.

130

Factorable Functions

Definition
A function f : R" — R is called factorable if it can be written as a sum of
products of univariate functions out of a given set O, whose arguments are

variables, constants, or other factorable functions.

e Example
O = {+7 ><7 /’ A'/ Sin7 COS7 eXp7 |0g7 |'|}

e Examples of non-factorable functions

o Integrals [f(x)dx with unknown antiderivative
e Black-box functions (e.g., function evaluation = simulation run)

130

Factorable Functions

Definition
A function f : R" — R is called factorable if it can be written as a sum of
products of univariate functions out of a given set O, whose arguments are

variables, constants, or other factorable functions.

e Example
O = {+7 ><7 /’ A'/ Sin7 COS7 eXp7 |0g7 |'|}

e Examples of non-factorable functions

o Integrals [f(x)dx with unknown antiderivative
e Black-box functions (e.g., function evaluation = simulation run)

We need to know the symbolic information about the functions.

130

Factorable Functions & Expression Trees

e Factorable functions <+ expression trees

e Expression tree: rooted tree with constants or variables as leafs and n-ary
operations as inner nodes

131

Factorable Functions & Expression Trees

e Factorable functions <+ expression trees

e Expression tree: rooted tree with constants or variables as leafs and n-ary
operations as inner nodes

Example

f(x1,x2) = x1 log x» 43

131

Factorable MINLPs

o If the entire MINLP only contains factorable functions, then the entire
MINLP can be represented as a generalized expression tree.

e Result: DAG (directed acyclic graph)

132

Factorable MINLPs

o If the entire MINLP only contains factorable functions, then the entire
MINLP can be represented as a generalized expression tree.

e Result: DAG (directed acyclic graph)

. 2
min x1 + X5
X1,X2

st. xp+sinxe <4, xix +x§ <5,

X1 € [—4, 4] NZ, xp €& [07 10] NZ

132

Reformulation of Factorable MINLPs

min Xp4q

st. xk=0k(x), 6€0O, k=n+1n+2,....,n+q,
h<xi<u, k=1,2,...,n+q,
xeX, x;€Z foralliel

e Variable bounds can be explicitly stated (or implicitly as part of x € X)
e g new auxiliary variables
e Restricted by 0, € O

e Convention: xp;4 replaces the objective function

133

Nonconvex MINLPs

The MINLP
. 2
min x1 + x>
s.t. x1+sinxe <4, xixo + x23 <5,
X1 € [74, 4] NZ, x € [O, 10] NZ
becomes
min xg
s.t. X3 =sinxa, x7 =x5+x5 —b, 0<x» <10, 0 < x¢ < 1000,
x4 = X1+ x3 — 4, xg = x3, -1<x3 <1, —45<x <0,
X5 = X1X2, X9 = X1 + Xs, —9<x <0, 0 < xg < 100,
X6 = X3, —4 < x; < 4, —40 < x5 <40, —4 < x9 <104,

X1, X2, X5, X6, X7, X8, X9 € 7

134

Nonconvex MINLPs

e Nonconvex sets

Ok ={xeER": x, =0k(x), xEX, I <x<u, €7, icl}

Idea: Determine convex sets ©, D Oy forall k =n+1,n+2,...,n+q

Convex relaxation

min Xp4q

st. xk €O, k=n+1,n+2,....,n+gq
<xi<u, §=12,....,n+q
xeX

e Open question: How to find ©,?

135

Nonconvex MINLPs

e Open question: How to find ©?

e Often, the © are polyhedral, i.e., described by linear inequalities

Ok = {x eR™": B'x>d" xe X,/ <x < u}

136

Nonconvex MINLPs

e Open question: How to find ©?

e Often, the © are polyhedral, i.e., described by linear inequalities

Ok = {x eR™": B'x>d" xe X,/ <x < u}

136

Nonconvex MINLPs

Open question: How to find 0,7
Often, the O are polyhedral, i.e., described by linear inequalities

Ok = {x eR™": B'x>d" xe X,/ <x < u}

Tightening via spatial branching (later more)

136

Under- and Overestimators and Envelopes

Definition

Let f: Q — R be a function on the convex set 2 C R”".

1. A function £ : Q — R is called a convex underestimator of f on €, if £ is a
convex function and if £(x) < f(x) holds for all x € Q. The set of all
convex underestimators is denoted by U(f, Q).

137

Under- and Overestimators and Envelopes

Definition

Let f: Q — R be a function on the convex set 2 C R”".

1. A function £ : Q — R is called a convex underestimator of f on €, if £ is a
convex function and if £(x) < f(x) holds for all x € Q. The set of all
convex underestimators is denoted by U(f, Q).

2. A function w : © — R is called a concave overestimator of f on Q, if w is
a concave function and if w(x) > f(x) holds for all x € Q. The set of all
concave overestimators is denoted by O(f, Q).

137

Under- and Overestimators and Envelopes

Definition
Let £ : Q — R be a function on the convex set 2 C R".
1. A function £ : Q — R is called a convex underestimator of f on €, if £ is a

convex function and if £(x) < f(x) holds for all x € Q. The set of all
convex underestimators is denoted by U(f, Q).

2. A function w : © — R is called a concave overestimator of f on Q, if w is
a concave function and if w(x) > f(x) holds for all x € Q. The set of all
concave overestimators is denoted by O(f, Q).

3. The function vexq[f] is defined by
vexo[f](x) = sup{{(x): £ € U(f,Q)} forall x € Q

and is called the convex envelope of f.

137

Under- and Overestimators and Envelopes

Definition
Let f: Q — R be a function on the convex set 2 C R”".

1. A function £ : Q — R is called a convex underestimator of f on €, if £ is a
convex function and if £(x) < f(x) holds for all x € Q. The set of all
convex underestimators is denoted by U(f, Q).

2. A function w : © — R is called a concave overestimator of f on Q, if w is
a concave function and if w(x) > f(x) holds for all x € Q. The set of all
concave overestimators is denoted by O(f, Q).

3. The function vexq[f] is defined by
vexo[f](x) = sup{{(x): £ € U(f,Q)} forall x € Q

and is called the convex envelope of f.

4. The function caveq[f] is defined by
caveg[f](x) = inf{w(x): w € O(f,Q)} forall x € Q

and is called the concave envelope of f.
137

Under- and Overestimators and Envelopes

138

In other words

The function vexq[f] minimizes the error ||f — || over all
functions & € U(f,Q):

vexq[f] = min{||f — {||s: & €U(F,Q)}

139

In other words

The function vexq[f] minimizes the error ||f — || over all
functions & € U(f,Q):

vexq[f] = min{||f — {||s: & €U(F,Q)}

Reason

The pointwise supremum of convex functions is again a convex function.

139

In other words

The function vexq[f] minimizes the error ||f — || over all
functions & € U(f,Q):

vexq[f] = min{||f — {||s: & €U(F,Q)}

Reason

The pointwise supremum of convex functions is again a convex function.

In analogy for concave functions.

139

Under- and Overestimators and Envelopes

Theorem

Let Q C R" be a compact set and let f : QQ — R be continuous. Then,
min f(x) = min _ vexqa[f](x)

xeQ x€Econv Q

holds.

140

Under- and Overestimators and Envelopes

Theorem

Let Q C R" be a compact set and let f : QQ — R be continuous. Then,

mig £ = min,, vexalf10:)

holds.

Moreover, let M be the set of all global minima of f over Q and let N the set
of global minima of vexq[f] over conv . Then, N' = conv M holds.

140

The Problem with Relaxations of Nonconvexities

“All happy families are alike; each unhappy family is unhappy in its own way."

— Leo Tolstoi; first sentence in Anna Karenina

141

The Problem with Relaxations of Nonconvexities

“All happy families are alike; each unhappy family is unhappy in its own way."

— Leo Tolstoi; first sentence in Anna Karenina

All linear functions are the same . ..

141

The Problem with Relaxations of Nonconvexities

“All happy families are alike; each unhappy family is unhappy in its own way."

— Leo Tolstoi; first sentence in Anna Karenina

All linear functions are the same . ..

... but all nonlinearities are different!

e Every type of nonconvexity needs to be studied separately

e Example: monomials of odd degree (xx = x,-2p+1, k € Z) are tackled in
Liberti and Pantelides (2003)

141

a-Underestimator

e Based on Androulakis et al. (1995), Maranas and Floudas (1994)
e f:Q — R twice continuously differentiable

e Domain Q C R" is given by

Q= [5>)?] = H [Kh)_(/]

Define

dalx) = Za, x0)(% — xi)

and consider

fo(x) = F(x) + da(x) = f(x +Za, x1)(%i — xi)

142

a-Underestimator

S

(x) = Fx) + 6a) = F() + D aulex; = x)(% = x)

is an underestimator if a > 0 since ¢« (x) is non-positive on €.

143

a-Underestimator

S

(x) = F0x) + dalx) = Fx) + Y ailx; — x:) (% = x)
is an underestimator if a > 0 since ¢« (x) is non-positive on €.

But what about convexity?
Lemma

Let \™" be the smallest eigenvalue of the Hessian matrix He(x) of f on Q.
Then, f, is convex on Q if \™" + 2 min; a; > 0 holds.

143

a-Underestimator

Lemma

Let A\™" be the smallest eigenvalue of the Hessian matrix H¢(x) of f on Q.
Then, f, is convex on Q, if \™" 4 2min; o;; > 0 holds.

Proof.

Consider
Hy (x) = Hr(x) + 2diag(a).

144

a-Underestimator

Lemma
Let A\™" be the smallest eigenvalue of the Hessian matrix H¢(x) of f on Q.

Then, £, is convex on Q, if \™™ + 2 min; aj > 0 holds.

Proof.

Consider
Hy (x) = Hr(x) + 2diag(a).

We show that it is positive semi-definite for all x € Q.

144

a-Underestimator

Lemma

Let A\™" be the smallest eigenvalue of the Hessian matrix H¢(x) of f on Q.
Then, fo is convex on Q, if \™" + 2min; a; > 0 holds.

Proof.

Consider
Hy (x) = Hr(x) + 2diag(a).

We show that it is positive semi-definite for all x € Q.

To show that H; (x) is positive-semidefinite, it suffices to show that
h"Hg (x)h >0 forall he R"

holds.

144

a-Underestimator

Proof ... continued.

We know that
Hfa (X) = Hf(X) =+ 2diag(a)

holds.

145

a-Underestimator

Proof ... continued.

We know that
Hfa (X) = Hf(X) =+ 2diag(a)

holds.

Thus, we have

h" Hg (x)h = h" He(x)h + 2h " diag(e)h
> Aminl |3 + 2(m[inaf)|\h\|§

> 0. O

145

Back to Bilinearities: McCormick Inequalities

Mathematical Programming 10 (1976) 147-175.
North-Holland Publishing Company

COMPUTABILITY OF GLOBAL SOLUTIONS TO
FACTORABLE NONCONVEX PROGRAMS:
PART I — CONVEX UNDERESTIMATING PROBLEMS *

Garth P. McCORMICK
The George Washington University, Washington, D.C., U.S.A.

Received 20 November 1973
Revised manuscript received 4 July 1975

For nonlinear programming problems which are factorable, a computable procedure
for obtaining tight underestimating convex programs is presented. This is used to exclude
from consideration regions where the global minimizer cannot exist.

146

Back to Bilinearities: McCormick Inequalities

Lemma (McCormick (1976))

Consider w = xy with x € [x,X] and y € [y, y]. Then, the inequalities

are valid inequalities.

W 2> yX + Xy — Xy,
w > yx + Xy — Xy,
ngx—&-)_(y—)_(X,
w S yx 4+ xy — Xy

147

Back to Bilinearities: McCormick Inequalities

Lemma (McCormick (1976))
Consider w = xy with x € [x,X] and y € [y, y]. Then, the inequalities
W > yX + Xy — xy,
w > yx + Xy — Xy,
w < yx + Xy —)?X,
w < yX + Xy — Xy
are valid inequalities.

Proof.

Consider, for instance, the first and fourth inequality:

0< (x=x)(y —y) =xy —xy —yx+xy,
0< (x=x)(Vy —y) =xV —xy —xy +xy. a

<

147

Back to Bilinearities: McCormick Inequalities

= Google Scholar mecormick n
& Artikel Ungefahr 3.610 Ergebnisse (0,07 Sek.)
Belisbige Zsit Computability of global solutions to factorable nonconvex programs: Part |—
Seit 2020 Convex underestimating problems
Seit 2019 GP McCormick - Mathematical programming, 1976 - Springer
Seit 2016 For nonlinear pr 1g prob! which are ble, a computable procedure for obtaining

tight underestimating convex programs is presented. This is used to exclude from consideration
regions where the global minimizer cannot exist ... Methods for finding global solutions of ...
1976 — 1976 Yy U9 Zilierivon: 1619 Ahnliche Artikel Alle 8 Versionen Web of Science: 791 9%

Zeitraum wahlen...

148

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.2 Spatial Branch-and-Bound

149

Spatial Branch-and-Bound for Nonconvex MINLP

... first a remainder on the linear case ...

150

Branch-and-Bound for (Binary) MILPs

u <+ +oo and Q + {(0,0)}.
while Q # 0 do
Choose (Z,0) € Q and set Q +— Q\ {(Z, 0)}.
Solve the Problem (3) with Z and O.
if (3) with Z and O is infeasible then
Continue.
end if
Let X be the optimal solution of Problem (3).
if c'x > u then
Continue.
end if
if X is integer-feasible then
Set x* < X, u <+ c ! x*, and continue.
end if
Choose i with x; ¢ {0,1}.
Set Q + QU{(ZuU{i},0),(Z,0U{i})}.
end while
if u < 4oc0 then
return optimal solution x*.
else
return “The problem is infeasible.”

end if
151

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

152

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = oo

152

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = oo LP relaxation, z; fractional

152

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 10 LP relaxation, z; fractional

z; fractional integer feasible, u = 10

152

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 10 LP relaxation, z; fractional

zj fractional

integer feasible, u = 10

zy fractional z fractional, u = 12

152

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 6 LP relaxation, z; fractional

zj fractional

integer feasible, u = 10

zy fractional z fractional, u = 12

zy fractional integer feasible, u = 6

152

Branch-and-Bound for (Binary) MILPs

min f(x)=c'x st. Ax=b, x>0, x=(y,z), yeR", ze{0,1}*

best integer-feasible solution: u = 6 LP relaxation, z; fractional

zj fractional

integer feasible, u = 10

z fractional, u = 12

zy fractional integer feasible, u = 6

infeasible integer feasible, u = 8

152

Branch-and-Bound for Nonconvex MINLP

The original MINLP

)
st. ¢c(x) <0
x e X
xi €2, iel

Subproblems (= nodes of the branch-and-bound tree) are specified

by additionally imposed bounds
Required (as before):

1. procedure to compute lower bounds on the optimal objective function

value of the subproblem

2. procedure for partitioning the feasible set of a subproblem

153

The Subproblem

The original MINLP plus additional bounds

min f(x)

st. ¢c(x) <0
x € X (MINLP(/, u))
/,'SX,‘SU,‘, i:1,...,n
x€Z, i€l

154

The Subproblem

The original MINLP plus additional bounds

min f(x)

st. ¢c(x) <0
x € X (MINLP(/, u))
/,'SX,‘SU,‘, i:1,...,n
xi €L, i¢el

Goals

e Obtain a lower bound of the optimal value of f(x)

e Solve a convex relaxation or (even) a polyhedral relaxation

154

Polyhedral Relaxation of the Subproblem

Consider the polyhedral (and thus convex) relaxation

st. B'x>d", k=n+1n+2,...,n+q (LP(1, u))
xeX
[,-S)(,-Su;7 i=1,....n4+gq

of MINLP(/, u) and let X be an optimal solution.

155

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. R is feasible for the MINLP(/, u)

e Thus, X is also feasible for the original MINLP
e The subproblem can be eliminated (i.e., the node can be pruned)

156

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. R is feasible for the MINLP(/, u)

e Thus, X is also feasible for the original MINLP
e The subproblem can be eliminated (i.e., the node can be pruned)

2. % is infeasible for the MINLP(/, u)

156

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. R is feasible for the MINLP(/, u)
e Thus, X is also feasible for the original MINLP
e The subproblem can be eliminated (i.e., the node can be pruned)
2. % is infeasible for the MINLP(/, u)
(a) Thereis an index i € | with x; ¢ Z (i.e., the point is not integer feasible)

— Branching on integer variables (as usual): Create new subproblems
MINLP(/~, u™) and MINLP(/", u™) by imposing the additional constraints
x; < |Xi] and [&] < x;, respectively

156

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. R is feasible for the MINLP(/, u)

e Thus, X is also feasible for the original MINLP
e The subproblem can be eliminated (i.e., the node can be pruned)

2. % is infeasible for the MINLP(/, u)
(a) Thereis an index i € | with x; ¢ Z (i.e., the point is not integer feasible)
— Branching on integer variables (as usual): Create new subproblems
MINLP(/~, u™) and MINLP(/", u™) by imposing the additional constraints
x; < |Xi] and [&] < x;, respectively
(b) Thereisanindex k € {n+1,n+2,...,n+ q} with & # 0x(X)

— Branching on a continuous variable (spatial branching)

156

Spatial Branching

e Suppose x; is one of the arguments of 0y
e Branching example:
xi <X vV X<x

e Note: the feasible sets of the two new subproblems have non-empty
intersection

e This is different to branching on integer variables

157

Spatial Branching

e Suppose x; is one of the arguments of 0y

e Branching example:
xi <X vV X<x

e Note: the feasible sets of the two new subproblems have non-empty
intersection

e This is different to branching on integer variables

Further Difference

For

e purely integer nonconvex MINLPs and
e convex MINLPs

only branching on integer variables is required.

157

Spatial Branching

e Suppose x; is one of the arguments of 0y

e Branching example:
xi <X vV X<x

e Note: the feasible sets of the two new subproblems have non-empty
intersection

e This is different to branching on integer variables

Further Difference

For

e purely integer nonconvex MINLPs and
e convex MINLPs

only branching on integer variables is required.

In These Cases:

Finite bounds on integers variables ensures finite termination of the algorithm

157

Bounding Operations

Let
Q(luy={xe[lul: c(x) <0, xe X, x; € Zforall i €1}

be the feasible set of MINLP(/, u).

158

Bounding Operations

Let
Q(luy={xe[lul: c(x) <0, xe X, x; € Zforall i €1}

be the feasible set of MINLP(/, u).

MINLE (Lg«»
F(Lu)

MINLP(L W) Fiole (2wt)

Fr) F L)

158

Bounding Operations

Definition
A bounding operation yields
1. two subproblems
MINLP(/~,u™), MINLP(/*,u")

by applying a branching rule and

2. lower bounds
Aqu—,u=)r At,ut)

as well as upper bounds
Ha(—,u=)s HQ(+,ut)

for the new subproblems

159

Consistent Bounding Operations

Definition
A bounding operation is called consistent if, at every step, the subsets

are either pruned or can be further refined in such a way that, for any finite
sequence (24)s resulting from applying bounding operations, one can
guarantee that

lim — Ao, =0

Jim, 2y = Aoy

holds.

160

Finite Consistence and Finite Termination

Definition
In addition, a bounding operation is called finitely consistent if any
sequence (Q4)n of successively refined partitions of Q is finite.

161

Finite Consistence and Finite Termination

Definition
In addition, a bounding operation is called finitely consistent if any
sequence (Q4)n of successively refined partitions of Q is finite.

Theorem (McCormick 1976, Horst & Tuy 1993)

If the bounding operation in the branch-and-bound algorithm is finitely
consistent, then the algorithm terminates after a finite number of steps.

161

How to do spatial branching?

e Branching means partitioning the feasible set of subproblem MINLP(/, u)
into h > 2 feasible sets of the subproblems MINLP(/®) ™), .
MINLP(/® u(h)

e The lower bounds A))y, Agu2 4@), - - Agu 4y should be no
smaller than the lower bound for MINLP(/, u).

e For the ease of presentation: two new subproblems MINLP(/~, u™) and
MINLP(/™, u™) are created

162

How to do spatial branching?

Branching means partitioning the feasible set of subproblem MINLP(/, u)
into h > 2 feasible sets of the subproblems MINLP(/®) ™), .
MINLP(/® u(h)

The lower bounds A))y, A2 4@), - -+ Agur 4y should be no
smaller than the lower bound for MINLP(/, u).

For the ease of presentation: two new subproblems MINLP(/~, u™) and
MINLP(/™, u™) are created

Most implementations use variable branching:

xi<b V x;>b

162

How to do spatial branching?

Branching means partitioning the feasible set of subproblem MINLP(/, u)
into h > 2 feasible sets of the subproblems MINLP(/®) ™), .
MINLP(/® u(h)

The lower bounds A))y, A2 4@), - -+ Agur 4y should be no
smaller than the lower bound for MINLP(/, u).

For the ease of presentation: two new subproblems MINLP(/~, u™) and
MINLP(/™, u™) are created

Most implementations use variable branching:
xi<b V x;>b

But how?

The performance of the overall method strongly depends
on the choice of i and b

162

How to do spatial branching?

e A fractional integer variable is an obvious candidate for branching

e Suppose that all integer variables are already integer-valued so that we
“only” need to branch on continuous variables in the following

e Thus, branching is done because of a variable xx with K¢ # 0x(X)

Nice-to-haves

An ideal choice of i should

e increase the lower bounds Aq(;— ,—) and A+ u+),
e reduce the feasible sets Q(/~,u~) and Q(/T, u™),

163

How to do spatial branching?

Let X be a solution of a relaxation of MINLP(/, u).

A continuous variable x; is a branching candidate if

e it is not fixed (i.e., its lower and upper bound do not coincide)

e it is an argument of a function 6y with Xk # 0«(X)

164

How to do spatial branching?

Let X be a solution of a relaxation of MINLP(/, u).

A continuous variable x; is a branching candidate if

e it is not fixed (i.e., its lower and upper bound do not coincide)

e it is an argument of a function 6y with Xk # 0«(X)

Example

If xk = 0k(x) = xixj, R # %iX;j, and [; < u;, then x; is a branching candidate.

164

How to do spatial branching?

Let X be a solution of a relaxation of MINLP(/, u).

A continuous variable x; is a branching candidate if

e it is not fixed (i.e., its lower and upper bound do not coincide)

e it is an argument of a function 6y with Xk # 0«(X)

Example

If xk = 0k(x) = xixj, R # %iX;j, and [; < u;, then x; is a branching candidate.

After branching, the two generated subproblems both will have a lower bound
no smaller than the one of their ancestor node since branching leads to tighter
relaxations.

164

Tightened Polyhedral Relaxations after Branching

A 2y A xp
I O I
! (@i, 2) [(@i, 2k)]
l; U; B l; /b U; B
(a) (b)

pictures taken from Belotti et al. (2013)

165

Choosing the Branching Point

e The choice of the branching point is crucial
e The degree of freedom differs from branch-and-bound
for mixed-integer linear optimization
e This means, the branching point may differ from X;

e The branching rule should ensure that X is infeasible for both
MINLP(/~,u~) and MINLP(/*, u™)

e Thus, x; < XV x; > X; will not suffice in general

166

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.3 Bound Tightening

167

Bound Tightening

e The performance of nonconvex MINLP solvers crucially depends
on the tightness of the convex relaxations

e The tightness of the convex relaxations strongly depends
on the variable bounds

e MINLP solvers spend a lot of effort in bound tightening

168

Bound Tightening

Let
Q={xe[lu:c(x)<0, xe X, x; € Zforiecl}

be the feasible set and let X be a feasible point with objective function value 2.

169

Bound Tightening

Let
Q={xe[lu:c(x)<0, xe X, x; € Zforiecl}

be the feasible set and let X be a feasible point with objective function value 2.

We could solve the 2n problems
i =min{x:x€Q, f(x) <2z}

and
uj = max{x;: x € Q, f(x) < 2}

169

Bound Tightening

Let
Q={xe[lu:c(x)<0, xe X, x; € Zforiecl}

be the feasible set and let X be a feasible point with objective function value 2.

We could solve the 2n problems
i =min{x:x€Q, f(x) <2z}
and

uj = max{x;: x € Q, f(x) < 2}

Problem

These 2n problems can be as hard as the original problem!

169

Feasibility-Based Bound Tightening (FBBT)

Idea

Infer a tighter bound on a variable x; because a bound on another variable x;
has changed

170

Feasibility-Based Bound Tightening (FBBT)

Idea

Infer a tighter bound on a variable x; because a bound on another variable x;
has changed

Example
Consider x; = x? and x; € [1i, ui].

Then, bounds on x; can be tightened to [/;, uj] N [I?, u?].

170

Feasibility-Based Bound Tightening (FBBT)

Affine-Linear Functions

Consider the constraint

n
xk:ao—l—Zajxj with k> n.

=1

171

Feasibility-Based Bound Tightening (FBBT)

Affine-Linear Functions

Consider the constraint

n
xk:ao—l—Zajxj with k> n.

j=1
Define

Jr={ie{l,...,n}:3;>0}, J ={je{l,...,n}: 3 <0}.
Then, valid bounds for x, are given by

ao+Zajuj+Zaj/j§xk§ao+Zaj/j—&—z:ajuj

jeJ— jest jes— jest

171

Feasibility-Based Bound Tightening (FBBT)

Affine-Linear Functions

Consider the constraint

n
xk:ao—l—Zajxj with k> n.

j=1
Define

Jr={ie{l,...,n}:3;>0}, J ={je{l,...,n}: 3 <0}.

Then, valid bounds for x, are given by

ao+Zajuj+Zaj/j§xk§ao+Zaj/j—&—z:ajuj

jeJ— jest jes— jest

These bounds can then be used to derive tighter bounds for x;, j =1,...,n.

171

Feasibility-Based Bound Tightening (FBBT)

e For nonlinear problems we can apply bound propagation
by using the corresponding DAG

e Leads to an iterative procedure that is/can be continued
as long as variable bounds change

e Does not need to converge

172

Optimality-Based Bound Tightening (OBBT)

The problems
i =min{x: x € Q, f(x) < 2}

and
uj = max{x: x € Q, f(x) < 2}

are usually to hard to be solved for bound tightening.

173

Optimality-Based Bound Tightening (OBBT)

The problems
i =min{x: x € Q, f(x) < 2}

and
uj = max{x: x € Q, f(x) < 2}

are usually to hard to be solved for bound tightening.

e In practice, one often uses polyhedral relaxations
for the feasible sets instead.

e This leads to valid bounds as well ...

e ... but still is expensive.

173

5. Modeling Languages: Overview

5. Modeling Languages
5.1 Using Solver Interfaces Directly

5.2 Pyomo

174

Modeling Languages

e Modeling languages allow to state optimization problems

e They provide interfaces to solvers that solve the stated problem

175

http://www.ampl.com
https://www.gams.com

Modeling Languages

e Modeling languages allow to state optimization problems

e They provide interfaces to solvers that solve the stated problem

The Two Classics

e AMPL: A Mathematical Programming Language
(http://www.ampl.com)

e GAMS: General Algebraic Modeling System
(https://www.gams.com)

175

http://www.ampl.com
https://www.gams.com

5. Modeling Languages: Overview

5. Modeling Languages

5.1 Using Solver Interfaces Directly

176

Example: Gurobi via Python

Code Example
The Knapsack problem coded in Python and solved with Gurobi

177

5. Modeling Languages: Overview

5. Modeling Languages

5.2 Pyomo

178

Introduction

“Pyomo is a Python package that supports the formulation and analysis of
mathematical models for complex optimization applications. This capability is
commonly associated with commercially available algebraic modeling languages

(AMLs) such as AMPL, AIMMS, and GAMS.”

179

Installation and Usage

If you are using Anaconda:

e conda install -c conda-forge pyomo

e conda install -c conda-forge ipopt coincbc glpk
If you are not using Anaconda:

e pip3 install pyomo
Usage:

e import pyomo.environ as *

e from pyomo.opt import SolverFactory

180

Modeling Components

What do we need?

. Model

min fo(x) Sets
x . Parameters
sit. fi(x) < b, i €l)
. Variables

. Objective

. Constraints

N o o s W N o=

. Interaction with solvers

181

Concrete Model vs. Abstract Model

Abstract Model
Concrete Model

n
min E G X;)
x = min 2x1 + 3x2
X

n
. >
s.t. Za,-jxj > b, i€l s.t. 3xi+4x >1
j=1 x1,x2 >0

x>0,j¢€J

m = AbstractModel () m = ConcretelModel ()

182

Initialization:
m.I = Set()

Useful arguments:

e dimen: Dimension of the members of the set.

e initialize: An iterable containing the initial members of the set, or function
that returns an iterable of the initial members the set.

Example:
m.I = Set(dimen=2,initialize=[(1,1),(1,2)]1)
Operations:
em.I =m.A | m.D # union
em.J =m.A & m.D # intersection
e m.K =m.A - m.D # difference
em.L =m.A "~ m.D # exclusive-or

183

Parameters

Initialization:

m.A = Set()
m.B = Set()
m.P = Param(m.A, m.B)

Useful arguments:
e default: The default value if no other specification is available.

Example:

m.S = Param(m.A, m.A, default=0)

184

Initialization:

m.A = Set()
m.B = Set()
m.x = Var(m.A, m.B)

Useful arguments:

e bounds: A function (or Python object) that gives a (lower, upper) bound
pair for the variable

e domain: A set that is a super-set of the values the variable can take on.

Example:

m.x = Var(m.A, domain=Positivelntegers, bounds=(0,6))

185

Objective and Constraints

Initialization of the Objective:

def ObjRule(m):
return sum(m.x[a] for a in m.A) + m.y

m.0bj = Objective(rule=0bjRule, sense=maximize)
Initialization of a typical constraint:

def Consl_rule(m, a):
return m.P[a,al*m.x[a] <= a

m.Consl = Constraint(m.A, rule=Consl_rule)

186

Instantiate models using dictionaries

Example:
m.I = Set()
m.p = Param()
m.q = Param(m.I)
m.r = Param(m.I, m.I, default=0)

data = {Nome: {

’I’: {None: [1, 2, 31},

’p’: {Nome: 100},

’q’: {1:10, 2:20, 3:30},

ro: {(1,1):110, (1,2):120, (2,3):230}}}
’i = m.create_instance(data) ‘

187

Solving and interaction with solvers

Example:

i = m.create_instance(data)
opt = SolverFactory(’ipopt’)
opt.solve(i)

Useful arguments of the solve method:

e tee: Boolean argument, which controls if the solver output is printed.

e warmstart: Boolean argument, which controls if the solver is warm started

using the values given in the variables.

e timelimit: Time in seconds after which the solver is told to stop
computing and to return the best solution found.

188

Using Pyomo with GAMS

’ Pyomo instance -+ GAMS — Solver — GAMS — Pyomo Instance‘

Example:

i = m.create_instance(data)
opt = SolverFactory(’gams’)
opt.solve(i)

Useful arguments of the solve method:

e tee: Boolean argument, which controls if the solver output is printed.
e solver: Solver used for the computation.

e warmstart: Boolean argument, which controls if the solver is warm started
using the values given in the variables.

e add_options: List of additional lines to write directly into model file before
the solve statement.

e mtype: Model type.

189

Warmstarting and Retrieving Variable Values

Example:

= Var()

i = m.create_instance(data)

m.

o

i.a.value = 2
opt = SolverFactory(’gams’)
opt.solve(i, warmstart=True)

value_a_after_computation = i.a.value

190

6. Solvers: Overview

6. Solvers

191

The MINLP Tree

MINLP

Couvex Couvex Noucouvex Noucouvesx

NLT MiLe L(INIR S NP

Folyuourial

SOocP MISoce huee Cphucizebou,
Couex Coucec Noucou ve « Noucouvex

Qe ruee Qe (814

& MILe

192

Solvers for Nonconvex MINLP

ANTIGONE
e BARON

Couenne (open-source)

e LINDOGIobal

SCIP (open-source)

193

Solvers for Convex MINLP

e a-ECP

e Bonmin (open-source)

e DICOPT

e FiIMINT

e KNITRO

e MINLP-BB

e MINOTAUR (open-source)
e SBB

194

Solvers for MIQP

min x Qx+c'x st Ax= b, x>0
xER"

Convex MIQP

e CPLEX

e GUROBI

e MOSEK

e XPRESS
Nonconvex MIQP

e GLOMIQO

195

The NEOS Server

http://wuw.neos-server.org/neos/solvers/index.html

" ”||lIl7

s

SOLVERS

Type. An additional st s available for searching by Solver if you prefer.
h options 9

L
1f you need help in selecting a solver, consult the Optimization Tree of the NEOS Guide. The choice of solver then

problem.
h solver has sample problems and background information on the solver. Be sure to submit a sample problem to get a feel for how to submit optimization problems to NEOS. If

Problem Type Solver

Job Queue Tools

« View Job Queve
« View Job Results / Killa Job

Application =
« CONVERT [GAMS Inpuf]
« Domino [jpeg Input]
« ECM [csv Inputlfsingle_text Input]zip Input]
« Fishwerks [csv Input]

Bound Constrained Optimization

« LBFGS-B [AMPL Input]

196

http://www.neos-server.org/neos/solvers/index.html

7. What Else?: Overview

7. What Else?

197

Problem Classes

Mixed-Integer Quadratic Problems (MIQPs)

Minimization of quadratic objective over a mixed-integer polyhedral feasible set

198

Problem Classes

Mixed-Integer Quadratic Problems (MIQPs)

Minimization of quadratic objective over a mixed-integer polyhedral feasible set

Mixed-Integer Second-Order Cone Problems (MISOCPs)

Includes constraints of the form

|Ax + bll2 —p'x+q <0

198

Problem Classes

Mixed-Integer Quadratic Problems (MIQPs)

Minimization of quadratic objective over a mixed-integer polyhedral feasible set

Mixed-Integer Second-Order Cone Problems (MISOCPs)

Includes constraints of the form

|Ax + bll2 —p'x+q <0

Mixed-Integer Polynomial Problems (MIPPs)

Objective function and constraints may be general polynomials

198

Algorithms

e Generalized Benders Decomposition (GBD)
Extended Cutting Plane (ECP) method

e Presolve techniques

Bound tightening

e Primal heuristics

199

Valid Inequalities

e Disjunctive/split cuts
e Perspective cuts

e Chvatal-Gomory rounding and mixed-integer rounding cuts
for conic MINLP

e Intersection cuts
e Reformulation-Linearization Technique (RLT)

e Cut generating functions

200

Problem Classes

Mixed-integer ...

optimal control problems

stochastic problems

robust problems

e problems with black-box functions

bilevel problems (leader-follower games)

201

8. Literature: Overview

8. Literature

202

B

loannis Androulakis, Costas Maranas, and C. Floudas. “aBB: A Global
Optimization Method for General Constrained Nonconvex Problems.” In:
Journal of Global Optimization 7 (Dec. 1995), pp. 337-363. DOL:
10.1007/BF01099647.

Pietro Belotti et al. “Mixed-integer nonlinear optimization.” In: Acta
Numerica 22 (2013), pp. 1-131. poI: 10.1017/50962492913000032.

Marco A. Duran and Ignacio E. Grossmann. “An outer-approximation
algorithm for a class of mixed-integer nonlinear programs.” In:
Mathematical Programming 36.3 (1986), pp. 307-339. pDor:
10.1007/BF02592064.

Roger Fletcher and Sven Leyffer. “Solving mixed integer nonlinear
programs by outer approximation.” In: Mathematical Programming 66.1
(1994), pp. 327-349. 1SSN: 1436-4646. DOI: 10.1007/BF01581153.

William E. Hart et al. Pyomo-optimization modeling in python. Vol. 67.
Springer, 2017.

203

https://doi.org/10.1007/BF01099647
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1007/BF02592064
https://doi.org/10.1007/BF01581153

@ Reiner Horst and Hoang Tuy. Global Optimization. Springer, 1993. DOI:
10.1007/978-3-662-02598-7.

@ James E. Kelley Jr. “The Cutting-Plane Method for Solving Convex
Programs.” In: Journal of the Society for Industrial and Applied
Mathematics 8.4 (1960), pp. 703-712. poI: 10.1137/0108053.

@ A. H. Land and A. G. Doig. "An Automatic Method of Solving Discrete
Programming Problems.” In: Econometrica 28.3 (1960), pp. 497-520.
1sSN: 00129682, 14680262. URL:
http://www. jstor.org/stable/1910129.

@ Leo Liberti and Constantinos C. Pantelides. “Convex Envelopes of
Monomials of Odd Degree.” In: Journal of Global Optimization 25.2
(2003), pp. 157-168. 1SSN: 1573-2916. DOI: 10.1023/A:1021924706467.

204

https://doi.org/10.1007/978-3-662-02598-7
https://doi.org/10.1137/0108053
http://www.jstor.org/stable/1910129
https://doi.org/10.1023/A:1021924706467

B

Garth P. McCormick. “"Computability of global solutions to factorable
nonconvex programs: Part | — Convex underestimating problems.” In:
Mathematical Programming 10.1 (1976), pp. 147-175. 1sSN: 1436-4646.
DOI: 10.1007/BF01580665.

Pyomo Read the Docs.
https://pyomo.readthedocs.io/en/stable/index.html. Accessed:
2019-01-06.

Ignacio Quesada and Ignacio E. Grossmann. “An LP/NLP based branch
and bound algorithm for convex MINLP optimization problems.” In:
Computers & Chemical Engineering 16.10-11 (1992), pp. 937-947. DOI:
10.1016/0098-1354(92)80028-8.

205

https://doi.org/10.1007/BF01580665
https://pyomo.readthedocs.io/en/stable/index.html
https://doi.org/10.1016/0098-1354(92)80028-8

	Introduction
	Problem Classes
	Source Problems

	Algorithms for Convex MINLP
	Nonlinear Branch-and-Bound
	Kelley's Cutting-Plane Method
	Outer Approximation
	LP/NLP-Based Branch-and-Bound

	MILP-Based Reformulations
	Nonconvex MINLP
	Generic Relaxation Strategies
	Spatial Branch-and-Bound
	Bound Tightening

	Modeling Languages
	Using Solver Interfaces Directly
	Pyomo

	Solvers
	What Else?
	Literature

