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“Divide et Impera” in Graph Coloring

» Break up complex problems into a series of
easier problems, solved in cascade!

» Dantzig-Wolfe reformulation of the (weak)
compact Integer Formulations.

554
» Hard Combinatorial Optimization Problems, once KEEP
decomposed and reformulated, become easier to
tackle. CALM
AND
» Find effective decompositions and reformulations! DlVlDE ET

> Vertex Coloring Problem IM PERA

» Max Coloring Problem
> Partition Coloring Problem

» Sum Coloring Problem
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Automatic Dantzig-Wolfe Reformulation: Overview

Potentially, every MIP model is amenable to DWR, even if its structure is not
known in advance (from the modeler or from other sources).

We need to detect a structure algorithmically:

(i) which constraints of the MIP (if any) to keep in the master problem;
(if) the number of blocks k
(iii) how to assign the remaining constraints to the different blocks.

We need to partition the set of the original constraints into one subset
representing the master and several subsets representing the blocks.

» Permutation of the variables and the constraints to get an:

» Arrowead Form

» Once the decomposition is chosen = Branch-and-Price Algorithm
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GCG - Generic Column Generation

» GCG is a generic branch-cut-and-price solver for mixed integer programs.

> It is based on the branch-and-cut-and-price framework of SCIP and is also part of the SCIP
Optimization Suite.

» GCG is developed jointly by RWTH Aachen and Zuse-Institute Berlin.
[1] M. Bergner, A. Caprara, A. Ceselli, F. F., M. Libbecke, E. Malaguti, and E. Traversi.

Automatic dantzig—wolfe reformulation of mixed integer programs.
Mathematical Programming, 149(1):391-424, 2015.

Does it work? I've tried to solve a MIPLIB instance ...

noswot \ /A

B} N
noswot

noswot.mps.gz

noswot.sol.gz

Benchmark Tree

Easy

Feasible

J. Gregory, L. Schrage

182

128
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6605742 1239766 cutoff -41.0000 -43.0000 50153618 4.88%
6755003 1262076 -42.9461 19 -41.0000 -43.0000 51335942 4.88%
6896391 1280590 -43.0000 16 -41.0000 -43.0000 52543834 4.88%
= 538.58 sec. (168354.79 ticks, tree = 311.16 MB, solutions = 5)
size = 183.98 MB (115.07 MB after compression)
7045357 1301707 -42.3064 17 -41.0000 -43.0000 53726797
7190566 1322648 cutoff -41.0000 -43.0000 54954083
7330140 1343041 -42.1052 10 -41.0000 -43.0000 56158420
7469709 1364126 cutoff -41.0000 -43.0000 57393127
7604916 1384906 cutoff -41.0000 -43.0000 58651552
7737995 1406384 -43.0000 30 -41.0000 -43.0000 59883520
7869081 1428551 -42.2859 13 -41.0000 -43.0000 61156619
8001538 1450426 -43.0000 13 -41.0000 -43.0000 62448722
8145241 1471495 -42.1434 25 -41.0000 -43.0000 63632808
8286801 1488295 cutoff -41.0000 -43.0000 64889238
Elapsed time = 653.42 sec. (286514.23 ticks, tree = 359.84 MB, solutions = 5)
Nodefile size = 230.98 MB (143.38 MB after compression)
8425279 1504664 -42.6017 27 -41.0000 -43.0000 66138358 4.88%
=
Cover cuts applied: 65
Implied bound cuts applied: 20
Flow cuts applied: 21
Mixed integer rounding cuts applied: 34
Zero-half cuts applied: 1
Gomory fractional cuts applied: 8

Root node processing (before b&c):
Real time = 0.02 sec. (10.71 ticks)
Parallel b&c, 8 threads:
Real time 675.37 sec. (214017.86 ticks)
Sync time (average) 1.74 sec.
Wait time (average)

Total (root+branchacut) = sec. (214028.58 ticks)
Solution pool: 5 solutions saved.

MIP - Aborted, integer feasible: oObjective = -4.1000000000e+01
Current MIP best bound = -4.3000000000e+01 (gap = 2, 4.88%)

solution time = 675.39 sec. Iterations = 67328591 Nodes = 8560732 (1523579)
Deterministic time = 214030.15 ticks (316.90 ticks/sec)
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Solving noswot with SCIP and GCG

» CPLEX in more that 600 seconds explored 8286801 nodes, 1488265 to
be explored. Hundreds of cuts are generated but . .. still 4.88% of
optimaltiy gap!

Presolving Time: 6.0
Detecting purely block diagonal structure: not found.
Detecting set partitioning master structure: found 5 blocks.
chosen decomposition with 5 blocks of type bordered.

Discretization with continuous variables is currently not supported. The parameter setting will be ignored.

time | node | left |LP iter|MLP iter|LP it/n| mem |ndpt |ovars|mvars|ocons|mcons|ncuts|confs| dualbound | primalbound

0.05]| 1] 0| [ | - |1775k| © | 120 | 5| 172 | 12| © | © |-4.300000e+01 --

time | node | left |LP iter|MLP iter|LP it/n| mem |mdpt |ovars|mvars|ocons|mcons|mcuts|confs| dualbound | primalbound
* o.es| 1| o | o | 10 | - |a7ssk| © | 120 | 13 | 172 | 12| © | © |-4.300008e+01 |-5.860000e+80
*P 0.0s| 1] 0| | - |1788k| o | 120 | 172 | e |-4.300000e+01 |-5.000000e+00
starting reduced cost pricing..
| - |1918k]| | 120 172
| - |1928k| | 120 172
| - |1938K| | 120 172
| - |1938k| | 126 172

.300000e+01
.300000e+01
.300000e+01
.100000e+01

.800000e+01
.100000e+01
.100000e+01
.100000e+01

]
o | ] |-4 -3
o [} -4 1-4
0| [} |-4 -4
0| 8 |-4 1-4

: problen is solved [optimal solution found]
: 0.98
1

-4.10000000000000e+01 (2 solutions)
-4.10000000000000e+01
i 0.00 %

» GCG solved the instance in less than 1 second at the root node!
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The Vertex Coloring Problem (VCP)
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The Vertex Coloring Problem (VCP)

Given a graph G = (V, E), the VCP asks for a partition of the vertex set
C={S8,85:,...,5},

with the minimum number of colors, such that vertices linked by an edge
receive different colors.
St ={v1,vs, v7, vg}

So = {vo, v, vi0}

Sz ={v3, Vg, 5}

chromatic number — x(G) = 3

» A coloration C is a partition a of vertices into stables sets of G
» Clique number — w(G) =2 < x(G)
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Origins and applications

» Colour the map of UK, in such a way that no two
counties touching with a common stretch of
boundary are given the same colour, by using the
smallest number of colours.

» The Four Color Conjecture was proposed by
Francis Guthrie in 1852

Theorem (Appel and Haken (1976))

Given any separation of a plane into contiguous
regions, producing a figure called a map, no more
than four colours are required to color the regions of
the map so that no two adjacent regions have the
same color.

» |t was the first major theorem to be proved using
a computer.
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Origins and applications

1. problem (i): assign frequencies to broadcast
stations in such a way that:

> interfering stations use different frequencies;
> the total number of used frequencies is minimized.

2. problem (ii): assign exams to time slots in such a
way:

» every student can do the exams of the courses he
is taking;
> the total number of used time slots is minimized.

3. problem (iii): assign platforms to trains in such a
way that:

> if the arrival times overlap, the trains cannot use
the same platform;
> the total number of used platforms is minimized.
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How difficult is the VCP in practice?

Theorem (Garey and Johnson (1979))
The Vertex Coloring Problem is NP-Hard.

» Some NP-Hard problems can be solved to optimality for instances of
reasonable size:

» TSP — thousands of vertices (Branch-and-Cut Algorithms)
» BPP — up to 1000 items (Branch-and-Price Algorithms)

» VRP — up to 200 customers (Branch-and-Price Algorithms)

» VCP is really difficult from a practical viewpoint: it cannot be consistently
solved to optimality for graphs with more than ~ 150 vertices.

» The state-of-the-art algorithms for the VCP are based on Column
Generation!
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A natural compact Integer Linear Programming (ILP) Formulation

Two sets of binary variables
_J 1 ifcolor cis used
Ye 0 otherwise

. — {1 ifvertexvhas colorc
71 0 otherwise,

» given an an upper bound m < n
on the chromatic number
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A natural compact Integer Linear Programming (ILP) Formulation

. . ILP Formulation
Two sets of binary variables

m
~ [ 1 ifcolor cis used min > ¥

Ye *{ 0 otherwise xyel0} 5

m
. — | 1 ifvertexvhas color ¢ vac =1 vev

71 0 otherwise, =1
Xve + Xue < Yo vweE
» given an an upper bound m < n c=1,....,m

on the chromatic number

Very weak and symmetric formulation!



Dantzig-Wolfe reformulation Vertex Coloring Problem Pricing and Branching Conclusions and Perspectives

The Linear Programming Relaxation has optimal solution value 2

yi=1,y.=1

Ye=0 c=3,....m
1 1

Xv1:§,xv2:§ veV

Xee =0 veV,c=3,....m

m m m m
ZXVC+ZXUC§ZyC — ZYCZQ
c=1 c=1 c=1 c=1

=1 =1
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The Linear Programming Relaxation has optimal solution value 2

yri=1y=1

Ye=20 c=3,...,m
1

Xv1:§,xv2:§ veV

Xee =0 veV,c=3,...,m

m m m m
vac+zxuc§2}/c — ZYCZ2
c=1 c=1 c=1 c=1

=1 =1

Every (fract.) solution with o < n colors has () ! equivalent solutions!
2] V3 Vi V3 7] V3 Vi V3 V1 V3
Vo Vo Vo 7] 7]

a=n=3— 5 equivalent solutions
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Dantzig-Wolfe Reformulation

Minkowski-Weyl Theorem. Every polyhedron can be represented:
» by outer descriptions (intersection of finitely many affine halfspaces)

» by inner descriptions (Minkowski sum of a polytope and a finitely
generated cone)

So a polyhedron P = {x : Ax < b} can be then expressed as:

P:{X:X:Zp/\p-i—Zru,, > =1, %20, ;1,,20}
p r P

where p are the extireme points and r are the extreme rays of P.
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Dantzig-Wolfe Reformulation

Minkowski-Weyl Theorem. Every polyhedron can be represented:
» by outer descriptions (intersection of finitely many affine halfspaces)

» by inner descriptions (Minkowski sum of a polytope and a finitely
generated cone)

So a polyhedron P = {x : Ax < b} can be then expressed as:

P:{X:X:Zp/\p-i—Zru,, > =1, %20, ;1,,20}
p r P

where p are the extireme points and r are the extreme rays of P.

For the VCP, we reformulate the following sets of constraints (polytope):

Pc:{x,ye{OJ}: xvc—f—xucgyc,vueE} c=1,....,m

— if yo = 1, it is the stable set polytope!
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Extreme points — p € EP

-p _ J 1 ifvertex v has color cin p -p | 1 ifcolor cisusedin p
71 0 otherwise YP=9 0 otherwise

Relation between the original variables and the new ones:

xvc:Z)‘(fc/\g veV,c=1,....,m
pEEP

Yo=>_ VEX c=1,...,m
pEEP
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Extreme points — p € EP

-p _ J 1 ifvertex v has color cin p -p | 1 ifcolor cisusedin p
71 0 otherwise YP=9 0 otherwise

Relation between the original variables and the new ones:

xvc:Z)‘(fc/\g veV,c=1,....,m
pEEP
by c
yC:ZygAp c=1,...,m
peEP

Example of extreme points with 8 vertices (color last position):
» vertices 1, 3, 8 and color used
[1,0,1,0,0,0,0,1|1]

» color not used
[0,0,0,0,0,0,0,0[0]
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Exponential-size formulation

Now by using inner description of the “stable set” constraints we obtain:

o, L3

c=1 pcEP

m
SS xLap=1 veV

c=1 pcEP

Ao =1 c=1,....m
Z b b

pEEP
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Exponential-size formulation

Now by using inner description of the “stable set” constraints we obtain:

i, L

c=1 pcEP
m
D> X ap=1 vev
c=1 pcEP
> oap=1 c=1,...,m
pEEP

» The extreme points in which y; = 0 can be removed
» The colors are identical (same set of extreme points)

m
o= "N
c=1

» After the removal of some variables the “convex combination” constraints
become < and they can be dropped (due to the objective function)
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Exponential-size formulation

m
Jmin Y (%

pEEP:yR=1 \c=1

Ap
D M| DN ) =1
pEEP c=1

Ap

Conclusions and Perspectives

veV
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Exponential-size formulation

m
oy 2 (Z AE)

pEEP:yR=1 \c=1
Ap

Z)?ec<ZAg)—1 vev
pEEP c=1
Ap

by replacing the variables we obtain:

min > "X
(o)) Lo

> X =1 veV
pEEP

by relaxing the integrality condition on the variables — X\ > 0, we obtain the
fractional chromatic number x¢(G)
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Exponential-size formulation: example
Let . represent the set of incidence vectors of all stable sets of G:

S ={xe{0,1}": xy+x, <1,uveE}

» S ={{vi,va} {vi,va}, {va, i}, {2, 5}, {v3, &6} }
e N e N e e N !
Vo Sy Sy S3 Sy Ss

min )\31 + )\32 + /\33 + )\54 + )\35

A>0
v v )‘31 + >‘32 =1 (V1)
+ Asy + As, =1 (w)
As, +As; =1 (va)
+As, +Asy =1 ()
vy Vs +As, +As; =1 (vs)

cycle C of size 5
w(C) =2,x(C) =3 > A5, =As, =As, = =13 — x1(G) =25



Dantzig-Wolfe reformulation Vertex Coloring Problem Pricing and Branching Conclusions and Perspectives

Pricing and Branching
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Column Generation

» Restricted Mater Problem » Dual Problem

TZ'Q > s max >y m

Ses >0

veV
D> Asz1 vev Sm<t Ses
Se.s:vesS ves

» Given an opt. sol. (A", 7*) of the (RMP), find a stable set S* € .«

ZTI’;>1

veS*

» Pricing: Max Weight Stable Set Problem (MWSSP)
a(G,7") =max Yy X,
veV
Xu+xv <1 uvekE
xv, €{0,1} veV.
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MWSSPs are solved by means of specialized B&B algorithms!

» Main Idea! Given a valid lower bound on MWSSP of value g, we can
partition V into two disjoint sets of vertices

Pand B = V\ Psuch that o(G[P],7") < g
Branching is necessary on the vertices in B only!

» Instead of computing «(G[P], 7*), strong MWSSP upper bounds are
obtained via feasible dual solutions:

a(G, ) < min Z PK

Kex
Z pk > Ty veV,

Ke#vek
pk >0 KeX.

where 7 is a subset of the cliques of the graph.

> If £ is a vertex disjointed clique partition — Max Coloring Upper Bound!
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Infra-chromatic Bounding Functions (Main Idea)

v

Hard Clauses (non-edges)

Partial MAX-SAT Bound h=x1VXxs, =XV Xy
% - o o
2 hy = X2V X, hy = X2V Xs, hs = X3V Xs
» Soft Clauses (colors)
V3 Vi
S1 = X1VX3, So = X2V X4, S3 = X5
» Unit Literal Propagation

X5=1—=>Xx=0 )= xs=1(s)

Va v xs=1—x3=0(hs) = xi =1(s1)
» Inconsistency!
cycle C of size 5 — hy core {s1,%2,83}

w(C)=2,x(C) =3 » Stronger Bound

—x(C)>3—-1=2>w(C)
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Some Computational Results

BBMCHW MWSS

|V| |El  w(G) [x¢(G)] f[s]tot  {[s] pricing [s]tot  t[s] pricing
£1at300_28_0 300 21695 0.48 28 (28) 136.06 118.29 881.03 863.05
r1000.5 1000 238267 0.48 234 (234) 268.40 211.79 2556.25 2508.37
r250.5 250 14849 0.48 65 (65) 3.88 3.54 6.41 6.15
DSJR500.5 500 58862 047 122(122) 21.35 18.67 94.86 93.04
DSJR500.1c 500 121275 0.97 85 (85) 8.73 8.43 40.27 39.97
DSJC125.5 125 3891 0.50 16 (17) 2.36 1.85 3.83 3.33
DSJC250.9 250 27897 0.90 71 (72) 5.07 4.47 9.40 8.93
queenl0_10 100 1470 0.30 10 (11) 3.19 2.64 4.92 4.37
queenll_11 121 1980 0.27 11 (11) 9.20 8.21 13.87 12.98
queenl2_12 144 2596 0.25 12 (12) 41.51 39.63 67.42 65.60
queenl3_13 169 3328 0.23 13 (13) 234.69 231.10 303.05 299.73
queenld_14 196 4186 0.22 14 (14) 1564.04 1558.14 1922.45 1916.36

Table 1: Comparing the performance of BBMCW and MWSS as pricing algorithms in
computing the fractional cromatic number x¢(G).

[1] P. San Segundo, F. F. and J. Artieda.
A new branch-and-bound algorithm for the Maximum Weighted Clique Problem.
Computers & Operations Research , 110:18 — 33, 2019.
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Ryan/Foster branching rule
Basic idea. At each node of the branching tree select two vertices v,u € V:

Z As = 7, 7 is fractional
Se F.ueS,ves

Then two branching nodes are created as follows:

1) vertices v and u take the same color

2) vertices v and u take different colors

» This branching rule is complete (Zykov (49), Barnhart et al. (98)). Since
the master constraint matrix A is a 0-1 matrix, if a basic solution to
A X\* = 1 is fractional, then there exist two rows (vertices) u and v of the
master problem such that:

0< > As<t
SeF:uesS,vesS

» |t preserve the same pricing algorithm! Only minor graph modifications
are necessary.
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Example: v and v fractionally colored

» The first subproblem graph is obtained by adding the edge uv which
forces these vertices to take different colors.

» The second subproblem graph is obtained by merging the two vertices
into a new vertex w (connected to all the neighbours of u and v). This
forces the two vertices to take the same color.
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Conclusions and Future Lines of Search

» The Vertex Coloring Problems and its variants are very challenging
problems. The state-of-the-art exact approaches are branch-and-price
algorithms

» There is still a large space for improvements since only instances with up
to 100 vertices can be effectively solved

» To the best of my knowledge, no branch-and-cut-and-price algorithms
have been developed for the VCP

» Some techniques to accelerate the column generation phase can be
designed, e.g., stabilization, smoothing, strong branching, column
enumeration and columns pools, pricing relaxations etc. etc. ......
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Conclusions and Future Lines of Search

The Vertex Coloring Problems and its variants are very challenging
problems. The state-of-the-art exact approaches are branch-and-price
algorithms

There is still a large space for improvements since only instances with up
to 100 vertices can be effectively solved

To the best of my knowledge, no branch-and-cut-and-price algorithms
have been developed for the VCP

Some techniques to accelerate the column generation phase can be
designed, e.g., stabilization, smoothing, strong branching, column
enumeration and columns pools, pricing relaxations etc. etc. ......

| have not mentioned other exact approaches for the VCP like e.g., other
compact ILP formulations, branch-and-cut algorithms, combinatorial
branch-and-bound algorithm like DSATUR-B&B ....... etc. etc. ......
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