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Introduction

@ Cooperative games on a finite set N of players assign to any coalition
S C N its benefit v(S) due to the cooperation of its members.
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Supposing all players cooperate, generating a benefit v(N), the
question is how to share this benefit among the players in a rational
way.

The core is the set of sharings such that no coalition S receives less
than v(S). It can be empty.

The Bondareva-Shapley theorem characterizes the class of games
with a nonempty core. Such games are called balanced.
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S C N its benefit v(S) due to the cooperation of its members.

@ Supposing all players cooperate, generating a benefit v(/N), the
question is how to share this benefit among the players in a rational
way.

@ The core is the set of sharings such that no coalition S receives less
than v(S). It can be empty.

@ The Bondareva-Shapley theorem characterizes the class of games
with a nonempty core. Such games are called balanced.

@ A question arise:
What is the shape of the set of balanced games?
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Cooperative games on a finite set N of players assign to any coalition
S C N its benefit v(S) due to the cooperation of its members.
Supposing all players cooperate, generating a benefit v(N), the
question is how to share this benefit among the players in a rational
way.
The core is the set of sharings such that no coalition S receives less
than v(S). It can be empty.
The Bondareva-Shapley theorem characterizes the class of games
with a nonempty core. Such games are called balanced.
A question arise:

What is the shape of the set of balanced games?
We show that it is a polyhedron, and find its vertices and extremal
rays.

P. Garcia-Segador, M. Grabisch and P. Miranda (©2023 The geometry of balanced games



@ N ={1,...,n} set of players. Subsets of N are called coalitions.
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@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.
@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.
e x € RN is a payoff vector. Notation: for every S C N,

x(S) = ZX,'
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.

@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.

e x € RN is a payoff vector. Notation: for every S C N,

x(S5) = ZX,'

i€eS

@ Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x, called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).
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@ N ={1,...,n} set of players. Subsets of N are called coalitions.

@ A game with transferable utility in characteristic form (abbreviated
by TU-game or simply game) is a mapping v : 2V — R s.t.
v() = 0.
e x € RN is a payoff vector. Notation: for every S C N,
x(S) = Z X;
ieS

@ Aim of (cooperative) game theory: find a (set of) rational,
satisfactory payoff vector(s) x, called the solution of the game.
Usually, one impose x(N) = v(N) (efficiency: share the whole cake).

@ One of the best known solution: the core (Gillies, 1953)

C(v) = {x e RN : x(5) > v(S)VS,x(N) = v(N)}

(coalitional rationality, or stability of the grand coalition N)
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TU-games in other domains

@ In decision theory, one considers capacities, which are monotone
games: v is a capacity if S C T implies v(S) < v(T) and v(N) = 1.
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@ Probability measures are additive capacities:
v(AU B) = v(A) + v(B) for disjoint A, B
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@ In decision theory, one considers capacities, which are monotone
games: v is a capacity if S C T implies v(S) < v(T) and v(N) = 1.
@ Probability measures are additive capacities:
v(AU B) = v(A) + v(B) for disjoint A, B

@ The core of a capacity v is:

C(v) = {x e RN : x(S) > v(S)VS,x(N) =1}

i.e., x € C(v) can be interpreted as a probability measure
dominating (compatible with) v.
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TU-games in other domains

@ In decision theory, one considers capacities, which are monotone
games: v is a capacity if S C T implies v(S) < v(T) and v(N) = 1.

@ Probability measures are additive capacities:
v(AU B) = v(A) + v(B) for disjoint A, B

@ The core of a capacity v is:
C(v) = {x e RN : x(S) > v(S)VS,x(N) =1}

i.e., x € C(v) can be interpreted as a probability measure
dominating (compatible with) v.

@ In combinatorial optimization, when v is submodular, it can be seen
as the rank function of a matroid. Then the (anti-)core of v is the
base polyhedron of v (Edmonds, 1970).

4/18 P. Garcia-Segador, M. Grabisch and P. Miranda (©)2023 The geometry of balanced games



Balanced collections

@ (Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
D as1® =1/
SeB
(i.e., forevery i € N, > o5 scpAs = 1)(1" is in the relative interior

of the cone generated by the 1°, S € B).
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Balanced collections

@ (Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
D as1® =1/
SeB
(i.e., for every i € N, ZSai,SeB As = 1)(1" is in the relative interior
of the cone generated by the 1°, S € B).

@ (As)ses are the balancing weights.
@ Examples:
@ Every partition (balancing weights: 1)
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@ (Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
D as1® =1/
SeB
(i.e., for every i € N, ZSai,SeB As = 1)(1" is in the relative interior
of the cone generated by the 1°, S € B).
@ (As)ses are the balancing weights.
@ Examples:

@ Every partition (balancing weights: 1)
o n=3: {12,13,23} with A = (3,3, 3)
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Balanced collections

@ (Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
D as1® =1/
SeB
(i.e., for every i € N, ZSai,SeB As = 1)(1" is in the relative interior
of the cone generated by the 1°, S € B).
@ (As)ses are the balancing weights.
@ Examples:

@ Every partition (balancing weights: 1)
o n=23: {12,13,23} with A = (},1,1)

1
)2
o n=4: {12,13,14,234} with A = (3,3.3.3).
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Balanced collections

@ (Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all § € B s.t.
D as1® =1/
SeB
(i.e., for every i € N, ZSai,SeB As = 1)(1" is in the relative interior
of the cone generated by the 1°, S € B).
@ (As)ses are the balancing weights.
@ Examples:
@ Every partition (balancing weights: 1)
o n=3: {12,13,23} with A = (3,3, 3)
e n=24: {ﬁ,ﬁ,ﬁ,z—m} with A = (%, %, %, %)
@ A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
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@ (Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.
D as1® =1/
SeB
(i.e., for every i € N, ZSai,SeB As = 1)(1" is in the relative interior
of the cone generated by the 1°, S € B).

@ (As)ses are the balancing weights.
@ Examples:
@ Every partition (balancing weights: 1)
o n=3: {12,13,23} with A = (3,3, 3)
e n=24: {ﬁ,ﬁ,ﬁ,z—m} with A = (%, %, %, %)
@ A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
@ So far, the number of minimal balanced collections (m.b.c.) is
unknown beyond n = 4. A recursive algorithm has been proposed by

Peleg (1965).
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(Shapley, 1967) A collection B C 2V of nonempty coalitions is called
balanced if there exist positive numbers Ag for all S € B s.t.

D as1® =1/

SeB
(i.e., for every i € N, ZSai,SeB As = 1)(1" is in the relative interior
of the cone generated by the 1°, S € B).

(As)scs are the balancing weights.
Examples:

@ Every partition (balancing weights: 1)

o n=3: {12,13,23} with A = (3,3, 3)

e n=24: {ﬁ,ﬁ,ﬁ,z—m} with A = (%, %, %, %)
A balanced collection is minimal if no proper subcollection is
balanced (equivalently, the balancing weights are unique).
So far, the number of minimal balanced collections (m.b.c.) is
unknown beyond n = 4. A recursive algorithm has been proposed by
Peleg (1965).

Balanced collections correspond to regular hypergraphs
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (\%)scs, we have

> NEv(S) < v(N).
SeB

Moreover, none of the inequalities is redundant, except the one for

B = {N}.
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Nonemptiness of the core

Theorem (Bondareva-Shapley, sharp form)

A game v has a nonempty core if and only if for any minimal balanced
collection B with balancing vector (\%)scs, we have

> NEv(S) < v(N).
SeB

Moreover, none of the inequalities is redundant, except the one for

B = {N}.

Games satisfying this condition are called balanced
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©Q The set BG(n) of balanced games on N = {1,...,n}
Q The set BG,(n) of balanced games v on N such that v(N) = «

© The set BG, (n) of balanced games v on N such that v > 0 (and
v(N) =1 arbitrarily fixed)
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v(N) =1 arbitrarily fixed)
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©Q The set BG(n) of balanced games on N = {1,...,n}
Q The set BG,(n) of balanced games v on N such that v(N) = «

© The set BG, (n) of balanced games v on N such that v > 0 (and
v(N) =1 arbitrarily fixed)

©Q The set BGy(n) of balanced games which are monotone and
v(N) =1, i.e., capacities

The set BGp(n) seems extremely difficult to study. Its structure is not
elucidated.
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© The set BG, (n) of balanced games v on N such that v > 0 (and
v(N) =1 arbitrarily fixed)

©Q The set BGy(n) of balanced games which are monotone and
v(N) =1, i.e., capacities

The set BGp(n) seems extremely difficult to study. Its structure is not
elucidated.
— We focus on BG,(n) and BG(n).
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Balanced games

Four sets are of interest:

©Q The set BG(n) of balanced games on N = {1,...,n}

Q The set BG,(n) of balanced games v on N such that v(N) = «

© The set BG, (n) of balanced games v on N such that v > 0 (and
v(N) =1 arbitrarily fixed)

©Q The set BGy(n) of balanced games which are monotone and
v(N) =1, i.e., capacities

The set BGp(n) seems extremely difficult to study. Its structure is not
elucidated.

— We focus on BG,(n) and BG(n).

Notation: B*(n): set of m.b.c. on N, except {N}.
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Structure of BG, (n)

@ BG, (n) is determined by the following system of inequalities

D Asv(S) <1, BeB(n)
Se
V(BS) >0, Se2VN\{z N}
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Structure of BG, (n)

@ BG, (n) is determined by the following system of inequalities

D Asv(S) <1, BeB(n)
Se
V(BS) >0, Se2VN\{z N}

@ — BG, (n) is a convex polytope. What are its vertices?
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@ — BG, (n) is a convex polytope. What are its vertices?

v is a vertex of BG(n) if and only if v is balanced and 0-1-valued.
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Structure of BG, (n)

@ BG, (n) is determined by the following system of inequalities

D Asv(S) <1, BeB(n)
Se
V(BS) >0, Se2VN\{z N}

@ — BG, (n) is a convex polytope. What are its vertices?

v is a vertex of BG(n) if and only if v is balanced and 0-1-valued.

To any 0-1-valued game v, we associate D C 2N\ {&, N}, the collection
of subsets S such that v(S) = 1.
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Structure of BG, (n)

@ BG, (n) is determined by the following system of inequalities

D Asv(S) <1, BeB(n)
Se
v(BS) >0, Se2VN\{z N}

@ — BG, (n) is a convex polytope. What are its vertices?

v is a vertex of BG(n) if and only if v is balanced and 0-1-valued.

To any 0-1-valued game v, we associate D C 2N\ {&, N}, the collection
of subsets S such that v(S) = 1.

Let D be a family of subsets D in 2NV \ {(, N}. Then, D defines a vertex
of BG. (n) iff either D =) or D # @.
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1

Consequently, when (D = {i}, the core is reduced to the vector 11U}
i.e., the vector in R"” with ith component equal to 1, and 0 otherwise.

9/18 P. Garcia-Segador, M. Grabisch and P. Miranda (©)2023 The geometry of balanced games



Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1

Consequently, when (D = {i}, the core is reduced to the vector 11U}
i.e., the vector in R"” with ith component equal to 1, and 0 otherwise.

The number of vertices v, of BG, (n) is given by v, = f, + 1 where f, is
defined recursively as follows:

n—1
f,,:Z(Z) (22k_1—fk—1>,Vn>1 and f; = 0
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Structure of BG, (n)

Consider a vertex v of BG (n), associated to collection D. Then the
dimension of the core of v is | D] — 1

Consequently, when (D = {i}, the core is reduced to the vector 11U}
i.e., the vector in R"” with ith component equal to 1, and 0 otherwise.

The number of vertices v, of BG, (n) is given by v, = f, + 1 where f, is
defined recursively as follows:

n—1
f,,:Z(Z) (22k_1—fk—1>,Vn>1 and f; =0

k=1

3 4 5 6 7 8

1 2
vp |1 3 19 471 162631 12884412819 6.456e +19 1.361e + 39
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Adjacency in BG, (n)

Recall that two vertices vy, vo are not adjacent if there exist A, A" € [0, 1]
and vertices v, v4 distinct from vq, v» s.t.
Avi+(1=XNwv=Nw+(1-XN)y
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Adjacency in BG, (n)

Recall that two vertices vy, vo are not adjacent if there exist A, A" € [0, 1]
and vertices v, v4 distinct from vq, v» s.t.
Avi+(1=XNwv=Nw+(1-XN)y

(Naddef and Pulleyblank, 1981) A polytope P is said to be combinatorial
if the two following conditions hold:
@ All vertices of P are 0,1-valued.

@ Given two vertices vy, vo of P, if they are not
adjacent, then there exists two other different vertices vs, v4 such that
vi+w=v3+w
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Adjacency in BG . (n)

Recall that two vertices vy, vo are not adjacent if there exist A, A" € [0, 1]
and vertices v, v4 distinct from vq, v» s.t.
Avi+(1=XNwv=Nw+(1-XN)y

(Naddef and Pulleyblank, 1981) A polytope P is said to be combinatorial
if the two following conditions hold:
@ All vertices of P are 0,1-valued.

@ Given two vertices vy, vo of P, if they are not
adjacent, then there exists two other different vertices vs, v4 such that
vi+w=v3+w

The polytope BG . (n) is combinatorial.

As a consequence, the graph of the vertices of BG, (n) is Hamiltonian
(n > 2) or a hypercube (n =1,2).
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Adjacency in BG, (n)

Consider two vertices vy, vy of BG, (n), associated to D1, Dy
respectively, and (D1 = {i} = (\D2. Then v1 and v, are adjacent iff
either D1 C D, or the converse, and |D1AD,| = 1.
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Adjacency in BG, (n)

Consider two vertices vy, vy of BG, (n), associated to D1, Dy
respectively, and (D1 = {i} = (\D2. Then v1 and v, are adjacent iff
either D1 C D, or the converse, and |D1AD,| = 1.

D1 Do D1 Dy

(a) (b) (c)
Figure: Non-adjacency of vq, v», with associated collections D1, D,. Case (a):
D3 =B, U (@1 N D2) U Bz, Dy =B U (Dl N @2) U By; Case (b)
D3 = D1 U B3, Dy = (D1 N Dy) U By (similar when Dy, D, exchanged); Case
(C)Z D3 =D1UDy, Dy =D1NDs.
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities

> Asv(S) —v(N) <0, Be B (n)
SeB
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities

> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB

@ — BG(n) is an unbounded convex polyhedron.

@ For any nonempty S C N, we define

The geometry of balanced games
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Structure of BG(n)
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@ — BG(n) is an unbounded convex polyhedron.

@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
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@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
@ the Dirac game ds by 0s(T) =1iff T =S and 0 otherwise
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
@ the Dirac game ds by 0s(T) =1iff T =S and 0 otherwise

Let n > 2. Then BY(n) is (2" — 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wj)ien, wi = ugjy, the unanimity game centered on {i}
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Structure of BG(n)

@ BG(n) is determined by the following system of inequalities
> Asv(S) —v(N) <0, Be B (n)
SeB
@ — BG(n) is an unbounded convex polyhedron.
@ For any nonempty S C N, we define
o the unanimity game us by us(T) =1iff T 2 S and 0 otherwise
@ the Dirac game ds by 0s(T) =1iff T =S and 0 otherwise

Let n > 2. Then BY(n) is (2" — 1)-dimensional polyhedral cone, which is
not pointed. Its lineality space Lin(BG(n)) has dimension n, with basis
(wj)ien, wi = ugjy, the unanimity game centered on {i}

As BG(n) is not pointed, it can be decomposed as follows:
BG(n) = Lin(BG(n)) ® BG°(n)

where BG%(n) is a supplementary space (not unique), chosen so that the

coordinates corresponding to singletons are zero.
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Structure of BG(n)

Let n > 2. The extremal rays of BG(n) are

@ The 2n extremal rays corresponding to Lin(BG(n)):

Wi,...,Wp, —Wq,..., —Wp,

2" — n — 2 extremal rays of the form rs = —ds, S C N, |S| > 1;

°
@ n extremal rays of the form

r= Z 8s, i€ N.

53i,|S|>1

This yields in total 2" 4+ 2n — 2 extremal rays.
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Structure of BG(n)

Let n > 2. The extremal rays of BG(n) are
@ The 2n extremal rays corresponding to Lin(BG(n)):

Wi,...,Wp, —Wq,..., —Wp,
@ 2" — n — 2 extremal rays of the form rs = —ds, S C N, |S| > 1;
@ n extremal rays of the form

ri = Z ds, I€N.

53i,|S|>1

This yields in total 2" 4+ 2n — 2 extremal rays.

Lemma

The cores of w;, —w;, rj, rs for all i € N, S C N, |S| > 1 are singletons
(respectively, {1111}, {—11}}, {111}, {0}).
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Structure of BG(n)

BG°(n)

Lin(BS(n))
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When is the core reduced to a point?

@ In the case of BY(n), all extremal rays have a point core.
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When is the core reduced to a point?

@ In the case of BY(n), all extremal rays have a point core.

@ However, in the case of BSG, (n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |[(D| = 1.
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a vertex v has a point core iff its support D is s.t. |[(D| = 1.
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When is the core reduced to a point?

@ In the case of BY(n), all extremal rays have a point core.

@ However, in the case of BSG, (n), not all vertices have a point core:
a vertex v has a point core iff its support D is s.t. |[(D| = 1.

What can we say more?
General result: a game in the interior of BG(n) (or BG(n)) does not
have a point core.
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When is the core reduced to a point? Case of BG, (n)

Theorem

Consider two adjacent vertices vy, v, of BG(n), with associated
collections D1, Dy respectively, and (D1 = {i}, (D2 = {j}. Consider
v=2Av; + (1 —X)va. Then:

Q Ifi=j, then C(v) is a singleton, i.e., v has a point core.

Q Ifi#j and n < 4, then v has a point core.

16/18 P. Garcia-Segador, M. Grabisch and P. Miranda (©2023 The geometry of balanced games



When is the core reduced to a point? Case of BG, (n)

Theorem

Consider two adjacent vertices vy, v, of BG(n), with associated
collections D1, Dy respectively, and (D1 = {i}, (D2 = {j}. Consider
v=2Av; + (1 —X)va. Then:

Q Ifi=j, then C(v) is a singleton, i.e., v has a point core.

Q Ifi#j and n < 4, then v has a point core.

<

When n > 5, taking two adjacent vertices vi, v» having a point core does
not guarantee that any game on the edge between vy, v» has a point
core. A more specific result seems difficult to obtain.
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When is the core reduced to a point? Case of BG(n)

Any game in the lineality space BSG(n) has a point core.
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When is the core reduced to a point? Case of BG(n)

Any game in the lineality space BSG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B*(n), i.e., minimal balanced collections.

Consider a m.b.c. B € B*(n) and its corresponding facet in BG(n).

©Q If|B| = n, every game in the facet has a point core.

© Otherwise, no game in the relative interior of the facet has a point
core.
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When is the core reduced to a point? Case of BG(n)

Any game in the lineality space BSG(n) has a point core.

We recall that facets of BG(n) are in bijection with the elements of
B*(n), i.e., minimal balanced collections.

Consider a m.b.c. B € B*(n) and its corresponding facet in BG(n).

©Q If|B| = n, every game in the facet has a point core.

© Otherwise, no game in the relative interior of the facet has a point
core.

Consider a face F of BG(n), being the intersection of facets F1,..., 5,
with associated m.b.c. Bi,...,B,. Then any game in J has a point core
iff the rank of the matrix {1°,S € By U---UB,} is n.
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The lineality space has basis {u(1y, upy, g3y }, with extremal rays
—012, =013, —023, and ry, 2, r3.
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The lineality space has basis {u(1y, upy, g3y }, with extremal rays
—012,—013, =023, and r1, 2, 3.

m.b.c. —012 | =013 | =03 | n|n|n
B, ={1,2,3} X X X
B, ={1,23} X X X | %
Bz ={2,13} X X X X
By ={3,12} X X X | %
Bs = {12,13,23} x| x| x
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The case n =3

The lineality space has basis {u(1y, upy, g3y }, with extremal rays
—012, =013, —023, and ry, 2, r3.

m.b.c. —012 | =013 | =03 | n|n|n
B, ={1,2,3} X X X
B, ={1,23} X X X | %
Bz ={2,13} X X X X
By ={3,12} X X X | %
Bs = {12,13,23} x| x| x
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