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The Problem

Input
I Set T of items, set D of dimensions
I bin capacities Qd (d ∈ D)
I item weights wd

t (t ∈ T ,d ∈ D)
I D = {1} for Bin Packing
I D = {1,2} for (2D-Binary) Vector Packing
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Decomposition

Input
I Set T of items, set D of dimensions
I bin capacities Qd (d ∈ D)
I item weights wd

t (t ∈ T ,d ∈ D)
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Formulation
hp

t (constant): how many times item t is used in pattern p ∈ P

λp (variable): how many bins are filled with pattern p

Min
∑

p∈P
λp (1a)

S.t.
∑

p∈P
hp

t λp ≥ 1, t = 1, . . . ,m, (1b)

λp ∈ {0,1}, p ∈ P. (1c)

P contains only feasible patterns
(p satisfying

∑
t∈T wd

t hp
t ≤ Qd , for all d ∈ D).
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Relaxation
hp

t (constant): how many times item t is used in pattern p ∈ P

λp (variable): how many bins are filled with pattern p

Min
∑

p∈P
λp (2a)

S.t.
∑

p∈P
hp

t λp ≥ 1, t = 1, . . . ,m, (2b)

λp ≥ 0, p ∈ P. (2c)

P contains only feasible patterns
(p satisfying

∑
t∈T wd

t hp
t ≤ Qd , for all d ∈ D).
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Relaxation: A Fractional Solution

Min λ(4,5,6) + λ(7,8) + λ(7,9) + λ(9,8) + · · · (3a)
S.t. λ(4,5,6) + λ(4) + · · · ≥ 1, (3b)

λ(4,5,6) + λ(5) + · · · ≥ 1, (3c)
λ(4,5,6) + λ(6) + · · · ≥ 1, (3d)
λ(7,8) + λ(7,9) + · · · ≥ 1, (3e)
λ(7,8) + λ(8,9) + · · · ≥ 1, (3f)
λ(7,9) + λ(8,9) + · · · ≥ 1, (3g)

λp ≥ 0, p ∈ P. (3h)
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The VrpSolver Model

Graph G
v0 v1 v2 v3 v|T |−1 v|T |a1+

a1−

a2+

a2−

a3+

a3−

a|T |+

a|T |−

. . . . . .

I Resources d ∈ D = R = RM with consumption:
qat+,d = wd

t , qaj−,d = 0, t ∈ T ,d ∈ D

I Consumption bounds: [lvj ,d ,uvj ,d ] = [0,Qd ], t ∈ T .
I Same as [Hessler et al., 2018] and [Wei et al., 2019].
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The VrpSolver Model

Graph G
v0 v1 v2 v3 v|T |−1 v|T |a1+

a1−

a2+

a2−

a3+

a3−

a|T |+

a|T |−

. . . . . .

I Mapping: M(x0) = {a1+,a1−}, M(xt) = {at+}, t ∈ T
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The VrpSolver Model

Arc mappings
x0, x1

x0

x2 x3 x|T |
. . . . . .
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The VrpSolver Model

Arc mappings
x0, x1

x0

x2 x3 x|T |
. . . . . .

Formulation
Min x0

S.t. xt ≥ 1, t ∈ T ;

Additional Elements
I Subproblem cardinality: L = 0, U =∞
I Packing sets: B = ∪t∈T{{at+}}
I Branching over accumulated resource consumption and, if still

needed, by Ryan and Foster rule

I Enumeration is on
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I Packing sets: B = ∪t∈T{{at+}}
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I Enumeration is on
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Advanced Techniques borrowed from Vehicle Routing
I Bucket graph-based labelling algorithm for the RCSP

pricing [Righini and Salani, 2006] [Sadykov et al., 2017]
I Automatic dual price smoothing stabilization

[Wentges, 1997] [Pessoa et al., 2017]
I Reduced cost fixing of (bucket) arcs in the pricing problem

[Ibaraki and Nakamura, 1994] [Irnich et al., 2010]
[Sadykov et al., 2017]

I Limited-Memory Rank-1 Cuts [Jepsen et al., 2008]
[Pecin et al., 2017b] [Pecin et al., 2017c] [Pecin et al., 2017a]

I Enumeration of elementary routes [Baldacci et al., 2008]
I Multi-phase strong branching [Pecin et al., 2017b]
I Generic (strong) diving heuristic [Sadykov et al., 2018]
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Bin Packing: computational results

I Comparison with the best BCP [Wei et al., 2019] on AI and
ANI instances by [Delorme et al., 2016].

I All instances by [Falkenauer, 1996] (up to 501 items) and by
[Schoenfield, 2002] (up to 200 items, Hard28) solved in up to
3m37s (16s in the average) but pseudopolynomial
formulations lead to better results.

I Initial upper bound is rounded-up lower bound plus one
(easy for heuristics).

I Diving heuristic not enabled for ANI instances.
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Bin Packing: computational results

Best BCP Our BCPInstance class |J|
N T N T

ANI200 201 50/50 14s 50/50 17s
ANI400 402 47/50 >7m16s 50/50 1m36s
ANI600 600 0/50 >1h 3/50 >58m
ANI800 801 0/50 >1h 0/50 >1h
AI200 202 50/50 4s 50/50 52s
AI400 403 46/50 >6m 46/50 >8m11s
AI600 601 27/50 >29m 35/50 >24m
AI800 802 15/50 >46m 26/50 >46m

I Best BCP: [Wei, Luo, Baldacci, and Lim, 2019]
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Vertex Packing: computational results
Comparison with the state-of-the-art on the harderst
2-resources 200-items instances by [Caprara and Toth, 2001]

Class 1 Class 4Algorithm
N T N T

[Brandão and Pedroso, 2016] 10/10 2h07m 0/10 >2h
[Hu et al., 2017] 0/10 >10m 0/10 >10m
[Hessler et al., 2018] 3/10 >47m 0/10 >1h
Our BCP 10/10 2m42s 10/10 2m33s

Class 5 Class 9
[Brandão and Pedroso, 2016] 0/10 >2h 0/10 >2h
[Hu et al., 2017] 7/10 >6m 0/10 >10m
[Hessler et al., 2018] 7/10 >41m 0/10 >1h
Our BCP 10/10 12m10s 8/10 >27m
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New Branching Scheme for Bin Packing

VrpSolver Model

I Branching over accumulated resource consumption and, if still
needed, by Ryan and Foster rule
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I Disadvantage: subproblem solutions with positive capacity
slacks may be feasible in both branches.
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I Advantages: keeps the princing structure (robust), allows
stronger dominance rule.

I Disadvantage: subproblem solutions with positive capacity
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New Branching Scheme for Bin Packing
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New Branching Scheme for Bin Packing

4 8 95 76

Capacity 
consumption

Item weight

7

17
[0, 16]

[17, 17]

I Resource consumption bounds for branching on item 9 are
[0,16] and [17,17]

I Both paths can meet bounds [17,17] (disposable
resources)
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New Branching Scheme for Bin Packing

4 8 95 76

Capacity 
consumption

Item weight

7

17

I Must consider both minimum and maximum resource
consumptions

I No effective branching is possible for item 9
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New Branching Scheme for Bin Packing
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I Item 8 admits an effective branching
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New Branching Scheme for Bin Packing

The scheme
I In an effective branching, for each branch, there is at least

one non-zero λ variable whose path becomes infeasible.
I Some λ variables may still have paths feasible for both

branches.
I Previously proposed in [Gélinas et al., 1995] for vehicle

routing.
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New Branching Scheme for Bin Packing

The scheme
I In an effective branching, for each branch, there is at least

one non-zero λ variable whose path becomes infeasible.
I Some λ variables may still have paths feasible for both

branches.
I Proposed in [Gélinas et al., 1995] for vehicle routing.

Theorem
I For Bin Packing, any fractional solution with no effective

branching has the same projection as some convex
combination of integer solutions in the arcs space.
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New Branching Scheme for Bin Packing

Theorem
I Any fractional solution with no effective branching has the

same projection as some convex combination of integer
solutions in the arcs space.

Sketch of the proof

Step 1 Any fractional solution obtained with tight
(disposable) resource consumption bounds has
the same projection as some convex combination
of integer solutions in the arcs space.
I The master problem relaxation is equivalent

to a minimum cost flow problem.
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New Branching Scheme for Bin Packing

Theorem
I Any fractional solution with no effective branching has the same

projection as some convex combination of integer solutions in
the arcs space.

Sketch of the proof

Step 2 Any fractional solution with no effective branching is
feasible for some set of tight resource consumption
bounds (and the theorem follows from Step 1).

I No effective branching⇒ for every item t , and
consumption threshold q, every path is feasible either
under consumption bound ≤ q − 1 or ≥ q.

I Let q∗ be the maximum threshold the makes all paths
feasible for consumption bound ≥ q∗.

I For threshold q∗ + 1 all paths are feasible for
consumption bound ≤ q∗.

I Thus, all paths are feasible for the tight consumption
range [q∗, q∗].
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Conclusions and Future Work

Conclusions
I VrpSolver is an useful tool for testing (existing) advanced

BCP techniques on new problems
I For Bin Packing, it is competitive, and for Vector Packing,

superior to the state-of-the art.
I Such tests may inspire interesting new investigations (e.g.

the new branching scheme)

Possible Extensions to the New Branching Scheme
I Bin Packing with Multiple Size Bins
I Cutting Stock
I Generic VrpSolver Model (multiple resources)
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