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The Problem

Input
» Set T of items, set D of dimensions
> bin capacities Q¢ (d € D)
> item weights wf (t € T,d € D)
» D = {1} for Bin Packing
» D = {1,2} for (2D-Binary) Vector Packing
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The Problem
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A Vector Packing Instance

Set T of items, set D of dimensions

bin capacities Q% (d € D)

item weights w? (t € T,d € D)

D = {1} for Bin Packing

D = {1,2} for (2D-Binary) Vector Packing
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Decomposition
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A Vector Packing Instance

Set T of items, set D of dimensions

bin capacities Q% (d € D)
item weights w? (t € T,d € D)

D = {1} for Bin Packing

D = {1,2} for (2D-Binary) Vector Packing
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Formulation

hf (constant): how many times item t is used in pattern p € P

Ap (variable): how many bins are filled with pattern p

Min > A
peP
St. S HMN>1,  t=1,...,m,
peP

Ao €{0,1}, peP.

P contains only feasible patterns

(p satisfying 3,7 wéh? < Q7 for all d € D).
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Relaxation
hf (constant): how many times item t is used in pattern p € P

Ap (variable): how many bins are filled with pattern p

Min > A (2a)
peP
S.t. th/\p21, t=1,...,m, (2b)
peP
Ap >0, peP. (2¢)

P contains only feasible patterns
(p satisfying >, wZhf < Q9 for all d € D).
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Relaxation: A Fractional Solution

Min  Aase) + A\7.8) + A7.9) + ANg,8) + - (3a)
St A@a56) T Ay +--> 1, (3b)
A456) T AE) T > 1, (3c)
A456) +Ae) T =1, (3d)
A78) T A79) + > 1, (3e)
A7.8) T Ago) T >1, (3f)
A7) +Ago) T >1, (39)
Ap >0, peP. (3h)
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The VrpSolver Model

Graph G
vo A+ vy @+ v B Vir-1 &7+ vir
al— ao_ as_— a|7",

» Resources d € D = R = R with consumption:
qa[+7d == qu, qaj77d - 0, te T7d S D

> Consumption bounds: [ly, 4, Uy, 4] = [0,Q7], t € T.
» Same as [Hessler et al., 2018] and [Wei et al., 2019].
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The VrpSolver Model
RCSP Subproblem
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The VrpSolver Model

Graph G
Vo ai+ V4 aoy Vo as4 V3 V‘T|,1 aITH V|T\
al— ao_ as_— a|7",

> Mapping: M(x0) = {a14, a1}, M(x)) = {ar+ }, t € T
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The VrpSolver Model

Arc mappings
Xo, X1 Xo X3 X

Xo
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The VrpSolver Model

Arc mappings

X0, X X2 X3 XT|
Xo
Formulation _
Min X0

S.t. Xt21, te T;

Additional Elements
» Subproblem cardinality: L =0, U = oo
» Packing sets: B = Uier{{ar+}}

» Branching over accumulated resource consumption and, if still
needed, by Ryan and Foster rule

» Enumeration is on
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The VrpSolver Model

Arc mappings

X0, X X2 X3 XT|
Xo
Formulation _
Min X0

S.t. Xt21, te T;

Additional Elements
» Subproblem cardinality: L =0, U = oo
» Packing sets: B = Uier{{ar+}}

» Branching over accumulated resource consumption and, if still
needed, by Ryan and Foster rule (never needed)

» Enumeration is on
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Advanced Techniques borrowed from Vehicle Routing

>

| 2

v

Bucket graph-based labelling algorithm for the RCSP
pricing [Righini and Salani, 2006] [Sadykov et al., 2017]

Automatic dual price smoothing stabilization
[Wentges, 1997] [Pessoa et al., 2017]

Reduced cost fixing of (bucket) arcs in the pricing problem
[Ibaraki and Nakamura, 1994] [Irnich et al., 2010]
[Sadykov et al., 2017]

Limited-Memory Rank-1 Cuts [Jepsen et al., 2008]
[Pecin et al., 2017b] [Pecin et al., 2017c] [Pecin et al., 20173]

Enumeration of elementary routes [Baldacci et al., 2008]
Multi-phase strong branching [Pecin et al., 2017b]
Generic (strong) diving heuristic [Sadykov et al., 2018]
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Bin Packing: computational results

» Comparison with the best BCP [Wei et al., 2019] on Al and
ANI instances by [Delorme et al., 2016].

» All instances by [Falkenauer, 1996] (up to 501 items) and by
[Schoenfield, 2002] (up to 200 items, Hard28) solved in up to
3m37s (16s in the average) but pseudopolynomial
formulations lead to better results.

» Initial upper bound is rounded-up lower bound plus one
(easy for heuristics).

» Diving heuristic not enabled for ANI instances.
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Bin Packing: computational results

Instance class |J| Best BCP Our BCP

N T N T
ANI200 201 | 50/50 14s | 50/50 17s
ANI400 402 | 47/50 >7m16s | 50/50 1m36s
ANI6B00 600 | 0/50 >1h | 3/50 >58m
ANI800 801 0/50 >1h | 0/50 >1h
Al200 202 | 50/50 4s | 50/50 52s
Al400 403 | 46/50 >6m | 46/50 >8m1iis
Al600 601 | 27/50 >29m | 35/50 >24m
AI800 802 | 15/50 >46m | 26/50 >46m

» Best BCP: [Wei, Luo, Baldacci, and Lim, 2019]
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Vertex Packing: computational results

Comparison with the state-of-the-art on the harderst
2-resources 200-items instances by [Caprara and Toth, 2001]

, Class 1 Class 4
Algorithm N T N T
[Brandao and Pedroso, 2016] | 10/10  2h07m | 0/10 >2h
[Hu et al., 2017] 0/10 >10m | 0/10 >10m
[Hessler et al., 2018] 3/10 >47m | 0/10 >1h
Our BCP 10/10 2m42s | 10/10 2m33s
Class 5 Class 9
[Brand&o and Pedroso, 2016] | 0/10 >2h | 0/10 >2h
[Hu et al., 2017] 7/10 >6m | 0/10 >10m
[Hessler et al., 2018] 7/10 >41m | 0/10 >1h
Our BCP 10/10 12m10s | 8/10 >27m
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New Branching Scheme for Bin Packing

VrpSolver Model

» Branching over accumulated resource consumption and, if still
needed, by Ryan and Foster rule
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New Branching Scheme for Bin Packing

VrpSolver Model

» Branching over accumulated (disposable) resource consumption
and, if still needed, by Ryan and Foster rule (never needed)

» Advantages: keeps the princing structure (robust), allows
stronger dominance rule.

» Disadvantage: subproblem solutions with positive capacity
slacks may be feasible in both branches.
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New Branching Scheme for Bin Packing

VrpSolver Model

» Branching over accumulated (disposable) resource consumption
and, if still needed, by Ryan and Foster rule (never needed)

» Advantages: keeps the princing structure (robust), allows
stronger dominance rule.

» Disadvantage: subproblem solutions with positive capacity
slacks may be feasible in both branches.
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New Branching Scheme for Bin Pac
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New Branching Scheme for Bin Packing

Capacity
consumption
A
17 77
[0, 16]

L/

4 5 6 7 8 @ > ltem weight

» Resource consumption bounds for branching on item 9 are
[0,16] and [17,17]

» Both paths can meet bounds [17,17] (disposable
resources)
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New Branching Scheme for Bin Packing

Capacity
consumption
A

17

4 5 6 7 8 @ > Item weight

» Must consider both minimum and maximum resource
consumptions

> No effective branching is possible for item 9
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New Branching Scheme for Bin Packing

Capacity
consumption
A

17

4 5 6 7 @ 9 > Item weight

» Item 8 admits an effective branching
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New Branching Scheme for Bin Packing

The scheme

» In an effective branching, for each branch, there is at least
one non-zero A variable whose path becomes infeasible.

> Some ) variables may still have paths feasible for both
branches.

» Previously proposed in [Gélinas et al., 1995] for vehicle
routing.
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New Branching Scheme for Bin Packing

The scheme
» |n an effective branching, for each branch, there is at least
one non-zero A variable whose path becomes infeasible.
» Some ) variables may still have paths feasible for both
branches.
» Proposed in [Gélinas et al., 1995] for vehicle routing.

Theorem
» For Bin Packing, any fractional solution with no effective
branching has the same projection as some convex
combination of integer solutions in the arcs space.
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New Branching Scheme for Bin Packing

Theorem
» Any fractional solution with no effective branching has the
same projection as some convex combination of integer
solutions in the arcs space.

Sketch of the proof

Step 1 Any fractional solution obtained with tight
(disposable) resource consumption bounds has
the same projection as some convex combination
of integer solutions in the arcs space.

» The master problem relaxation is equivalent
to a minimum cost flow problem.
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New Branching Scheme for Bin Packing

Theorem

» Any fractional solution with no effective branching has the same
projection as some convex combination of integer solutions in
the arcs space.

Sketch of the proof

Step 2 Any fractional solution with no effective branching is
feasible for some set of tight resource consumption
bounds (and the theorem follows from Step 1).

> No effective branching = for every item ¢, and
consumption threshold g, every path is feasible either
under consumption bound < g — 1 or > q.
> Let g" be the maximum threshold the makes all paths
feasible for consumption bound > gq*.
» For threshold g* + 1 all paths are feasible for
consumption bound < g*.
» Thus, all paths are feasible for the tight consumption
range [q", 9"].
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Conclusions and Future Work

Conclusions

> VrpSolver is an useful tool for testing (existing) advanced
BCP techniques on new problems

» For Bin Packing, it is competitive, and for Vector Packing,
superior to the state-of-the art.

» Such tests may inspire interesting new investigations (e.g.
the new branching scheme)

Possible Extensions to the New Branching Scheme

» Bin Packing with Multiple Size Bins
» Cutting Stock
» Generic VrpSolver Model (multiple resources)
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