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Capacitated Vehicle Routing Problem (CVRP)

@ Undirected graph G’ = (V, E), V = {0,...,n}, 0 is the depot,
Vi ={1,...,n} are the customers; positive cost ¢, ¢ € E;
positive demand d;, i € V. ; vehicle capacity Q.

@ Find a minimum cost set of routes, starting and ending at the
depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed vehicle
capacity.

dz =1

®) Q=30
o © d2@18

di =16

di —13 @d,,:g
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Capacitated Vehicle Routing Problem (CVRP)

@ Undirected graph G’ = (V, E), V = {0,...,n}, 0 is the depot,
Vi ={1,...,n} are the customers; positive cost ¢, ¢ € E;
positive demand d;, i € V. ; vehicle capacity Q.

@ Find a minimum cost set of routes, starting and ending at the
depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed vehicle
capacity.
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Capacitated Vehicle Routing Problem (CVRP) :

Compact Formulation

e Undirected graph G' = (V, E), V. ={0,...,n}, 0 is the
depot, V. = {1,...,n} are the customers; positive cost c,,
e € E; positive demand d;, i € VT ; vehicle capacity Q.

o Find a minimum cost set of routes, starting and ending at
the depot, visiting all customers and such that the sum of
the demands of the customers in a route does not exceed
vehicle capacity.

Min > Cete (1a)
eck
S.t. Yo oz =2, i€V (1b)
e€d(i)
S 2. >2 [%S)] . ScvH (1c)
e€d(S)
Te € Ly, ec k. (1d)
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Capacitated Vehicle Routing Problem (CVRP) : graph

Single graph

G= (VY? A), A= {(27])7 (.771) : {17]} S E}7 VUsource — Usink — 03
R=Rny ={1}; ga,1 = (di +d;)/2, a = (i,5) € A (define dy = 0);
li,l = O,Ui’l = Q,i (S V;
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Capacitated Vehicle Routing Problem (CVRP) : solution

ds =1
0 = 30
N 53
21 _
Usource dy =18
VUsink di =16

dy =13

Optimum solution, cost 265
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VRPSolver Model for CVRP

Integer variables z., e € F.
Min > Cee (2a)
ecll
St Y xe=2, 1e V. (2Db)
e€d(7)
L= (Z?:l dl/QL U= n; M("Ee) = {(Z7j)a (]77’)}7
e={i,j} € E.
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Open Vehicle Routing Problem (OVRP)

@ Directed graph G’ = (V, A"), V ={0,...,n}, 0 is the depot,
Vi ={1,...,n} are the customers and A’ have no arcs ending at
the depot ; positive cost ¢,, a € A" ; positive demand d;, i € V ;
vehicle capacity Q.

@ Find a minimum cost set of routes, starting at the depot, visiting
all customers such that the sum of the demands of the customers
in a route does not exceed vehicle capacity.

dz =1

®) Q=30
o © @@18

di =16

dy — 13 @dSZs
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Open Vehicle Routing Problem (OVRP)

@ Directed graph G’ = (V, A"), V ={0,...,n}, 0 is the depot,
Vi ={1,...,n} are the customers and A’ have no arcs ending at
the depot ; positive cost ¢,, a € A" ; positive demand d;, i € V ;
vehicle capacity Q.

@ Find a minimum cost set of routes, starting at the depot, visiting
all customers such that the sum of the demands of the customers
in a route does not exceed vehicle capacity.
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Open Vehicle Routing Problem (OVRP) :

Compact Formulation

e Directed graph G' = (V, A"), V ={0,...,n}, 0 is the depot,
Vi ={1,...,n} are the customers and A’ have no arcs
ending at the depot ; positive cost ¢,, a € A’ ; positive
demand d;, ¢+ € V. ; vehicle capacity Q.

o Find a minimum cost set of routes, starting at the depot,
visiting all customers such that the sum of the demands of
the customers in a route does not exceed vehicle capacity.

Min > catq (3a)
ac A’
S.t. Yo za=1, ieVT; (3b)
a€d—(7)
Y ez [%2], scvh (30)
a€d—(S)
Tq € Ly, ae A (3d)
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How to Adapt the CVRP Model for the OVRP ?

Single graph

G = (V>A)7 A= {(17])7 (]77') : {'L:]} S E}7 Vsource — Usink — 0;
R=Ry ={1}; gu1 = (di +d;)/2, a = (i,5) € A (define dyp = 0);
li,l = O,uM = Q,i c V;

Integer variables z., e € F.
Min > Cee (4a)
eck
St. Y x.=2, 1€ V. (4b)
e€d(i)
L= (Z?:l dl/Q-‘ﬂ U=n; M(l‘e) - {(17‘7)7 (J?Z)}7
e={i,j} € E.

VRPSolver Tutorial



How to Adapt the CVRP Model for the OVRP ?

Single graph

G = (‘/,A)7 A= {(27])7 (]77') : {Zy.]} S E}7 Usource — Usink — 0;
R=Rny ={1}; qa,1 = (di +d;)/2, a = (i,5) € A (define dp =0);
li,1 = O,u“ = Q,’i (S V;

Formulation

Integer variables x,, a € A.

Min > dixg (ba)
acA

S Y @.=1  dei (5b)
a€d—(7)

L=[3i1d:i/Ql, U=n; M(za) = {(i,4)}, a = (i,5) € A.

c,=cqif a6 (0), and 0 otherwise.
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Open Vehicle Routing Problem (OVRP) : graph

Single graph

G = (‘/;A)) A = A, U{(7'70) 0 S V+}7 Ci0 = O;Z € V+7 Usource = Usink — O;
R=Rny ={1}; ga,1 = (di +d;)/2, a = (i,5) € A (define dop = 0);
litn=0,uin =Q,i€V;
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Open Vehicle Routing Problem (OVRP) : graph

Single graph

G=V,A), A=A U{(,0):5i€VT} cio=0,i € V' ; tsource = Vsink = 0;
R=Rnm ={1}; qa,1 = (di +d;)/2, a = (3,)) € A (define dp =0);

li,l = O,uM = Q,i c V;

Vsource
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Open Vehicle Routing Problem (OVRP) : solution

M
=1
dy =13 ds

Optimum solution, cost 165

Il
o0
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VRPSolver Model for OVRP

Formulation

Integer variables x4, a € A.

Min > Caq (6a)
acA

St. Y wme=1, eVt (6b)
a€d—(7)

L=[Y0, di/Ql, U=n;: M(z,) = {a}, a € A.
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Multi-Depot Vehicle Routing Problem (MDVRP)

o Graph G' = (V,E),V ={0,....,n+m —1}, D={0,1,...,m} is
a set of depots, Vi = {m+1,...,n+m — 1} are the customers;
E={{i,j}:i,j €V,i<j,iorjisnotadepot}; cost c., e € E;
positive demand d;, ¢ € V. ; vehicle capacity Q.

@ Find a minimum cost set of routes, starting and ending at the
same depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed capacity.

@ Q =30

ds =18
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Multi-Depot Vehicle Routing Problem (MDVRP)

o Graph G' = (V,E),V ={0,....,n+m —1}, D={0,1,...,m} is
a set of depots, Vi = {m+1,...,n+m — 1} are the customers;
E={{i,j}:i,j €V,i<j,iorjisnotadepot}; cost c., e € E;
positive demand d;, ¢ € V. ; vehicle capacity Q.

@ Find a minimum cost set of routes, starting and ending at the

same depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed capacity.
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How to Adapt the CVRP Model for the MDVRP ?

Single graph

G = (V>A)7 A= {(17])7 (]77') : {'L:]} S E}7 Vsource — Usink — 0;
R=Ry ={1}; gu1 = (di +d;)/2, a = (i,5) € A (define dyp = 0);
li,l = O,uM = Q,i c V;

Integer variables z., e € F.
Min > Cee (7a)
eck
St. Y x.=2, 1€ V. (7b)
e€d(i)
L= (Z?:l dl/Q-‘ﬂ U=n; M(l‘e) - {(17‘7)7 (J?Z)}7
e={i,j} € E.
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How to Adapt the CVRP Model for the MDVRP ?

Multiple graphs

G = (Vk,Ak) for each ke D,
AF = {(7/Z , Vj ) (7) ) T,7) € 18,4 == D\ 5}, Bsenmee = Ukinlx = 7);1:
RF=Ry ={1}; ¢, =(d, st dye)/2, 0= (vf,vF) € A* (define d, k=0);

k1 =0uk = Q,v, S V"

Formulation

Integer variables z., e € F/, with no edge between depots.

Min > Cee (8a)
ecll

St. Y m.=2 eV, (8b)
e€d(7)

Lk =0, U* =n, foreachkeD;
M(ze) = {(vf,vf), (v],vf) : vf,vf € G*}, e = {3, 5} € E.

J7
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Multi-Depot Vehicle Routing Problem (MDVRP) : graphs

Multiple graphs

Gt = (VF, Ak) for each k € D,
A% = {(oF, 08, (08, 08) : i,3} € B, # D\ K}, vhoures = i = o
= R = s qal—(dk—l—d )/2 a=(vf,vF) e A" (deﬁned =0);

Ly =0,u ; = Q,vf € V’“




Multi-Depot Vehicle Routing Problem (MDVRP) : graphs

Multiple graphs

Gt = (VF, Ak) for each k € D,
A% = {(oF, 08, (08, 08) : i,3} € B, # D\ K}, vhoures = i = o
= R = s qal—(dk—l—d )/2 a=(vf,vF) e A" (deﬁned =0);

Ly =0,u ; = Q,vf € V’“




Multi-Depot Vehicle Routing Problem (MDVRP) :

solution

ds =18
%‘D 3

33

Optimum solution, cost 227

41
=1
s ;\@dﬁzs
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Bin Packing Problem (BPP)

Data : Set T of items; bin capacities @) ; item weight wy, t € T'.

Goal : Find a packing using the minimum number of bins, such
that, the total weight of the items in a bin does not exceed its
capacity.

14

F1Gure — Toy instance
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Bin Packing Problem (BPP)

vo Mt w924 wy B3+ wy vir|-1 4TI+ iy
aj— ag— as— a|T|_

o Capacity is the only one resource with consumption :
Gaiy = W, Qaj, = 07 teT

e Consumption bounds [0, Q] for all nodes

RCSP Subproblem

[0,Q] Wi+ [0,Q] W2+ [0,Q] W3+ [0,Q)] 0, Q] YITI+ [0, Q)
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Bin Packing Problem (BPP)

Toy instance with 7' =5 and @ = 14

14

10

FI1GURE — Toy instance solution
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Bin Packing Problem (BPP)

Toy instance with T' =5 and @ = 14, solution :

00806W=14
@0999@ W=t
00T O_B_B_0 v
100000W:10

Instance toy.txt, objective value = 4 bins
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Bin Packing Problem (BPP)

Arc mapping

T, T1 T2 T3 2B
Zo

Formulation and Additional Elements

Min o
S.t. x =1, teT;

@ Subproblem cardinality : L =0, U = oo

@ Packing sets : B = Uer{{at+}}

@ Branching over accumulated resource consumption and, if still
needed, by Ryan and Foster rule

@ Enumeration is on
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Variable Sized Bin Packing Problem (VSBPP)

Data : Set T of items; Set B of bin types; bin capacity

QF,k € B; bin cost ¢, k € B bin availability si, k € B ; item
weight wy, t € T

Goal : Find a packing minimizing the cost with bins, such that,
the total weight of the items in a bin does not exceed its
capacity and the availability of bins is not violated.

20
Bl
Availability : 2 2
Cost by unit: 1 3

F1GURE — Toy instance
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Variable Sized Bin Packing Problem (VSBPP)

Data : Set T of items; Set B of bin types; bin capacity

QF,k € B; bin cost ¢, k € B bin availability si, k € B ; item
weight wy, t € T

Goal : Find a packing minimizing the cost with bins, such that,
the total weight of the items in a bin does not exceed its
capacity and the availability of bins is not violated.

9

10

20| [
14 14
8

Cost 5

F1GURE — Toy instance solution
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How to Adapt the BPP Model for the VSBPP ?

vg A1+ wv; @2+ wy A3+ w3

OO0 a0

al— (07 as—

Y]

akl
|- T+ V1| t
0
Ao
a|T|_

o Capacity is the only one resource with consumption :

Qat+ - ’U)t, Qa]-_ = 07 t € T

e Consumption bounds [0, maxcp Q"] for nodes vy, t € T

e Consumption bounds [0, Q¥] for arcs ay, k € B
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How to Adapt the BPP Model for the VSBPP ?

Arc mapping

vp L1 vy T2 vy T3 w3 U|T|-1 T5 YT i

G020+ 2020

Let zy = 1 if item ¢ assigned, let y; be the number of bin of type

k € B used.
Min Y, cp Cryk (9a)
St. @ =1, teT (9b)
Yk < Sk, ke B (9¢)
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Black and White Traveling Salesman Problem (BWTSP)

o Let B be the set of black nodes, W be the set of white
nodes, a complete graph G = (BUW, E), and Q € N*.

o Find a shortest Hamiltonian tour, visiting all vertices and
such that the number of white vertices between any two
customers not exceed value Q).

How to model that with one subproblem creating
paths that :

e start with a black node,
e visit at most () white nodes,
e and finish with a black node ?
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Black and White Traveling Salesman Problem (BWTSP)

B={1,2} and Q =2

Instance toy.tsp
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Black and White Traveling Salesman Problem (BWTSP)

B={1,2} and Q =2

Instance toy.tsp, cost 3381
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Black and White Traveling Salesman Problem (

Graph representation of the model

Complete subgraph

Source Sink

Black Nodes Black Nodes
Duplicated

@ Resource bounds on nodes : [0, Q)]

@ Resource consumption of arcs
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Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model, B = {1,2} and Q = 2

Instance toy.tsp
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Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model, B = {1,2} and @ = 2

Instance toy.tsp, cost 3381
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Black and White Traveling Salesman Problem (BWTSP)

o Let B be the set of black nodes, W be the set of white
nodes, a complete graph G = (BUW, E), and Q € N*.

o We denote V.= BUW, ¢, the cost of using e € £

Formulation

Integer variables z., e € E

Min = ) cpcCeTe (10a)
St YeespyTe=2, 1€V (10b)

h
Il
<
I

O

M (z.) = {edges representing e in the subproblem graph}

Is this model works ? Try to print a solution.
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Black and White Traveling Salesman Problem (BWTSP)

F1GURE — Example of a feasible solution to the previous model

We need subtour elimination constraints :
Consider black node 1 € B,

S Y w2 be B\{1L, ViUV = V\{L,b},VinVe = 0
i€VIU{1} jEVaU{b}

Separation by looking for mincut between pairs of black nodes

(1,b), be B\ {1}

VRPSolver Tutorial



