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Vehicle Routing Problem (VRP)

One of the most widely studied in Combinatorial Optimization:

+7,500 works published only in 2018 (Google Scholar), mostly
heuristics

Direct application in the real systems that distribute goods
and provide services. Optimized routes can:

save a lot of money
reduce the environmental impacts of transportation
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Example: In 2017, Amazon spent USD 21.7B in shipping,
14.2% of its net sales. As customers demand quicker
service, this percentage is growing!
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Vehicle Routing Problem (VRP)

Reflecting the variety of real transportation systems, VRP
literature is spread into hundreds of variants. For example, there
are variants that consider:

Vehicle capacities,

Time windows,

Heterogeneous fleets,

Multiple depots,

Split delivery, pickup and delivery, backhauling,

Arc routing (Ex: garbage collection),

etc, etc.

Articles describing new variants appear every week
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Outline of the presentation

Part I - Advances on Exact CVRP algorithms

Review of the advances in the last 15 years

Part II - From CVRP to other classic VRP variants

Part III - A Generic Exact VRP Solver

VRPSolver model

Computational results

Downloading and using VRPSolver

Conclusions: Perspectives on the use of exact algorithms in
practice
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Part I - Advances on Exact

CVRP Algorithms
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Capacitated Vehicle Routing Problem (CVRP)

First (Dantzig and Ramser [1959]) and most basic variant:

Instance: Complete graph G = (V ,E ) with V = {0, . . . , n}; 0 is
the depot, V+ = {1, . . . , n} is the set of customers. Each edge
e ∈ E costs ce . Each i ∈ V+ demands di units. Homogeneous fleet
of vehicles with capacity Q.

Solution: Set of routes from the depot, respecting the capacities
and visiting all customers once; minimizing the total cost.
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CVRP instance: n = 61,Q = 100, indicated demands,
Euclidean distances
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Optimal solution: n = 61,Q = 100, indicated demands,
Euclidean distances
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Why we care so much about the fruit fly?

Drosophila Melanogaster
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Why we care so much about the fruit fly?

Widely used organism for research in genetics, physiology, and life
history evolution. Eight Nobel prizes had been awarded for

discoveries using Drosophila
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Why we care so much about CVRP?

Common strategy in scientific research:

1 Study the simplest (but still representative!) case of a
phenomenon

2 Generalize the discoveries for more complex cases

Historically, several important ideas on routing were first
proposed on CVRP and later generalized for many other
variants
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Edge Formulation (Laporte and Nobert [1983])

Variable xe indicates how many times e is used.

min
∑
e∈E

cexe (1)

S.t.
∑
e∈δ(i)

xe = 2 ∀ i ∈ N, (2)

∑
e∈δ(S)

xe ≥ 2d
∑
i∈S

di/Qe ∀ S ⊆ N, (3)

xe ∈ {0, 1} ∀ e ∈ E \ δ(0), (4)

xe ∈ {0, 1, 2} ∀ e ∈ δ(0). (5)

Constraints (3) are Rounded Capacity Cuts
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Branch-and-Cut (BC) Algorithms for CVRP

Extensive research for finding additional families of cuts for the
Edge formulation:

Framed Capacity, Strengthened Comb, Multistar, Extended
Hypotour, etc.

The dominant approach until early 2000’s:

Araque, Kudva, Morin, and Pekny [1994]

Augerat, Belenguer, Benavent, Corberán, Naddef, and Rinaldi
[1995]

Blasum and Hochstättler [2000]

Ralphs, Kopman, Pulleyblank, and Trotter Jr. [2003]

Achuthan, Caccetta, and Hill [2003]

Lysgaard, Letchford, and Eglese [2004]
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Best BC results

LLE04
Class Size #Ins #Unsolved Root gap (%) Avg. Time(s)
A 36-79 22 7 2.06 6638
B 36-79 20 1 0.61 8178
E-M 50-199 12 9 2.10 39592
F 44-134 3 0 0.06 1016
P 14-100 24 8 2.26 11219

Total 81 25

Processor Intel Celeron 700MHz

Size of the smallest unsolved instance: 49 customers

J. Lysgaard, A. Letchford, and R. Eglese. A new branch-and-cut

algorithm for the capacitated vehicle routing problem. Mathematical

Programming, 100:423–445, 2004
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Set Partitioning Formulation (Balinski and Quandt [1964])

Ω is the set of routes, route r costs cr , coefficient air indicates how
many times r visits customer i

min
∑
r∈Ω

crλr (6)

S.t.
∑
r∈Ω

airλr = 1 ∀ i ∈ V+, (7)

λr ∈ {0, 1} ∀ r ∈ Ω. (8)

Exponential number of variables =⇒ Column generation /
Branch-and-Price (BP) algorithms

Pricing elementary routes is strongly NP-hard =⇒ Relax Ω
allowing some non-elementary (with cycles) routes

Even with elementary routes, not a good CVRP formulation!.
Typical root gaps >3%, worse than 2% of BC
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Combining Column Generation and Cut Separation

Fukasawa et al. [2006] combined both methods. A cut over edge
variables ∑

e∈E
αexe ≥ b,

is translated to ∑
r∈Ω

(
∑
e∈E

αeaer )λr ≥ b,

where aer is the number of time that e is used in route r .

The combination of column generation with cuts defined over
edges yields root gaps around 1%:

BCP, the combination of BC and BP can be much
better than either of those techniques alone
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Robust vs Non-robust Branch-Cut-and-Price (BCP)

A crucial issue is the effect of the new dual variables in the pricing:

Robust Cut

Dual variables are translated into costs in the pricing. The
subproblem structure does not change.

Non-robust Cut

Dual variables change the structure of pricing. Each added cut
makes it harder.
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Robust BCP results in FLL+06

LLE04 FLL+06
Class #Ins NS Gap T(s) NS Gap T(s)
A 22 7 2.06 6638 0 0.81 1961
B 20 1 0.61 8178 0 0.47 4763
E-M 12 9 2.10 39592 3 1.19 126987
F 3 0 0.06 1016 0 0.06 2398
P 24 8 2.26 11219 0 0.76 2892

Total 81 25 3

Processor Intel Celeron 700MHz Pentium 4 2.4GHz

Robust BCP solved all literature instances with up to 134
customers. 3 larger instances remained open: M-n151-k12,
M-n200-k16 e M-n200-k17.

R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi, M. Reis, E. Uchoa, and

R.F. Werneck. Robust branch-and-cut-and-price for the capacitated

vehicle routing problem. Mathematical Programming, 106:491–511, 2006
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Baldacci, Christofides and Mingozzi [2008]

Uses non-robust cuts: Strong Capacity and Clique

Root gaps significantly reduced. Several tricks to keep pricing
reasonably tractable.

New Key Idea

Instead of branching, algorithm finishes by enumerating all routes
with reduced cost smaller than the gap. The SPF with only those
routes is solved by CPLEX. This saves a lot of time in some
instances.

R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the

vehicle routing problem based on the set partitioning formulation with

additional cuts. Mathematical Programming, 115(2):351–385, 2008
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Baldacci, Mingozzi and Roberti [2011]

New Key Idea

Introduces ng-routes, an effective elementarity relaxation:

For each i ∈ V+, NG (i) ⊆ V+ contains the ng -size closest
customers. An ng -route can only revisit i if it passes first by a
customer j such that i /∈ NG (j)

ng -size = 8 does not make pricing too hard and, in practice,
eliminates most cycles

Non-robust Subset Row Cuts (Jepsen et al. [2008]) replace
Cliques, smaller impact on pricing

R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and

pricing strategies for the vehicle routing problem. Operations Research,

59:1269–1283, 2011a
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Røpke [2012]

Back to Robust BCP, but already using ng -routes.

New Key Idea

A sophisticated and aggressive strong branching, reducing a lot
the branch-and-bound trees.

M-n151-k12 solved in 5 days!

S. Røpke. Branching decisions in branch-and-cut-and-price algorithms for

vehicle routing problems. Presentation in Column Generation 2012, 2012
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Contardo and Martinelli [2014]

Uses Subset Row Cuts and ng -routes

New Key Idea

Enumeration to a pool with up to several million routes can be
performed. After that, pricing is done by inspection in the pool.

Non-robusts cuts can be freely separated

As lower bounds improve, fixing by reduced costs reduce pool
size

The problem is finished by a MIP only when pool size is much
reduced

M-n151-k12 solved in 3 hours!

C. Contardo and R. Martinelli. A new exact algorithm for the multi-depot

vehicle routing problem under capacity and route length constraints.

Discrete Optimization, 12:129–146, 2014a
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Pecin et al. [2014]

A very complex BCP algorithm incorporating elements from all
previously mentioned works.

New Key Idea

The concept of limited memory cuts for greatly reducing the
negative impact of non-robust cuts in the pricing.

M-n151-k12 solved in 3 minutes!

D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved

branch-cut-and-price for capacitated vehicle routing. In Proceedings of

the 17th IPCO, pages 393–403. Springer, 2014
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Optimal solution M-n200-k16, 10 hours CPU, cost: 1274
(Best heuristic solution: 1278)
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Golden Instances

Golden, Wasil, Kelly and Chao [1998] proposed 12 CVRP
instances, having from 240 to 483 customers.

Frequent in the heuristic literature

Considered “out of reach” of exact algorithms

6 instances could be solved, with 240, 252, 300, 320, 360 and 420
customers.
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Optimal solution Golden 20 (420 customers), 7 days CPU
time, cost 1817.59; best heuristic 1817.86
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New Instances

Class X with 100 instances, ranging between 100 and 1000
custumers:

Designed to mimic the diversity of characteristics found in real
applications

Available at CVRPLIB
(http://vrp.atd-lab.inf.puc-rio.br/index.php/en/)

E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian.

New benchmark instances for the capacitated vehicle routing problem.

European Journal of Operational Research, 257(3):845–858, 2017
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Results on Instances X

45 out of 100 instances could be solved (sometimes with special
parameterization and very long runs):

100 ≤ n < 200 : 22/22 (100%)

200 ≤ n < 300: 16/21 (76%)

300 ≤ n < 500: 6/25 (24%)

500 ≤ n ≤ 1000: 1/32 (3%)

Smallest unsolved: X-n256-k16

Largest solved: X-n655-k131
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Optimal solution X-655-k131, 2491 seconds CPU time,
cost 106,780
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Part II - From CVRP

to other classic variants
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VRP with Time Windows (VRPTW)

Results on the classic Solomon instances (100 customers)

All solved, 55/56 at the root node

Results on Gehring-Homberger instances (200 customers)

51/60 solved, 27 for the first time

D. Pecin, C. Contardo, G. Desaulniers, and E. Uchoa. New enhancements

for exactly solving the vehicle routing problem with time windows.

INFORMS Journal on Computing, 29:489–502, 2017a
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Heterogeneous Fleet VRP (HFVRP)

Solves most instances with up to 200 costumers, two times
more than previous methods

A. Pessoa, R. Sadykov, and E. Uchoa. Enhanced branch-cut-and-price

algorithm for heterogeneous fleet vehicle routing problems. European

Journal of Operational Research, 270:530–543, 2018
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Capacitated Arc Routing Problem (CARP)

The classic multi-vehicle arc routing

Solves instances with up to 190 required edges, two times larger
than previous methods.

23/24 Eglese instances, 11 for the first time

134/135 other instances from the literature

D. Pecin and E. Uchoa. Comparative analysis of capacitated arc routing

formulations for designing a new branch-cut-and-price algorithm.

Transportation Science, (Online First), 2019
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Multi-Trip VRP (MTVRP)

Vehicles can return to the depot for refilling

Solves instances with up to 50 customers, two times larger than
previous methods.

R. Paradiso, R. Roberti, D. Laganà, and W Dullaert. An exact solution

framework for multi-trip vehicle routing problems with time windows.

Operations Research, Forthcoming, 2019
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A Recent Survey

Other examples of state-of-the-art exact algorithms for VRP
variants can be found in this survey:

L. Costa, C. Contardo, and G. Desaulniers. Exact branch-price-and-cut

algorithms for vehicle routing. Transportation Science, 53:946–985, 2019
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The difficulty of creating state-of-the-art exact algorithms
for new VRP variants

The BCP algorithms that are achieving the best results for the
most VRP variants are very complex:

Each of the previously mentioned algorithms took months to
be constructed, even when built by a team of experts starting
from an existing algorithm for another variant!

There are intricate conceptual issues

One would like to have a generic algorithm that could be easily
customized to many variants
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Previous attempt (Desaulniers et al. [1998])

A framework where several variants are solved by the same BP
algorithm over the SPF. The variants are modeled by defining
different Ω routes sets, as the solutions of Resource Constrained
Shortest Path (RCSP) Problems.

min
∑
r∈Ω

crλr (9)

S.t.
∑
r∈Ω

airλr = 1, ∀ i ∈ V+, (10)

λr ∈ {0, 1} ∀ r ∈ Ω. (11)

G. Desaulniers, J. Desrosiers, I. loachim, M. Solomon, F. Soumis, and

D. Villeneuve. A unified framework for deterministic time constrained

vehicle routing and crew scheduling problems. In Fleet management and

logistics, pages 57–93. Springer, 1998
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VRPSolver

A BCP solver for a generic model that encompasses a wide class of
VRPs and even some other kinds of problems

Also defines routes as resource constrained shortest paths, but
allows an arbitrary Master structure (not only Set
Partitioning). It also incorporates almost all advanced elements
found in the recent VRP algorithms, including:

ng -paths,
Rank-1 cuts with limited memory,
Rounded Capacity Cuts separators,
Route enumeration to pools,
Hierarchical Strong Branching,
Automatic Dual Stabilization

A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. A generic exact

solver for vehicle routing and related problems. In Proceedings of the

20th IPCO, volume 11480, pages 354–369. Springer, 2019
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Part III -

VRPSolver
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The Basic VRPSolver Model
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Graphs for Resource Constrained Shortest Path (RCSP)
generation (pricing)

Define directed graphs G k = (V k ,Ak), k ∈ K (one graph per
subproblem), having two special vertices: vksource, vksink (identical
or distinct). For each subproblem also define a set Rk of
resources having:

Arc consumptions: qa,r ∈ R, a ∈ Ak , r ∈ Rk

Accumulated resource consumption interval limits:
[la,r , ua,r ], a ∈ Ak , r ∈ Rk

May also be defined on vertices: [lv ,r , uv ,r ] , v ∈ V k , r ∈ Rk

(equivalent to defining [la,r , ua,r ] = [lv ,r , uv ,r ],∀a ∈ δ−(v))

Let V = ∪k∈KV k and A = ∪k∈KAk
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Graphs for Resource Constrained Shortest Path (RCSP)
generation (pricing)

Resource Constrained Path

A path p = (vksource = v0, a1, v1, . . . , an−1, vn−1, an, vn = vksink) over
a graph G k should have n ≥ 1 arcs, vj 6= vksource and vj 6= vksink,
1 ≤ j ≤ n − 1, and is feasible if:

– for every r ∈ Rk , the accumulated resource consumption Sj ,r
at visit j , 0 ≤ j ≤ n, where S0,r = 0 and
Sj ,r = max{laj ,r ,Sj−1,r + qaj ,r}, does not exceed uaj ,r .

For each k ∈ K , Pk is the set of all resource constrained
paths in G k

P = ∪k∈KPk
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Example
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Example

0[0, 10]

1

[3, 10]

2

[0, 10]

3

[0, 6]

4

[0, 10]

5 [0, 10]
vsource vsink
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Path 1: 0 – 1 – 3 – 5
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Example

0[0, 10]

1

[3, 10]

2

[0, 10]

3

[0, 6]

4

[0, 10]

5 [0, 10]
vsource vsink

2

3

4

1

2

1

3

22
1

1

S0,r = 0

S1,r = 2 + 1 = 3

drop 1

S2,r = 7

exceeds upper limit

Path 1: 0 – 1 – 3 – 5 (Infeasible)
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Example

0[0, 10]

1
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3
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4
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5 [0, 10]
vsource vsink
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22
1

1

S0,r = 0

S1,r = 3
S4,r = 6

S2,r = 4
S5,r = 7

S3,r = 5

S6,r = 10

Path 1: 0 – 1 – 3 – 5 (Infeasible)
Path 2: 0 – 2 – 4 – 3 – 2 – 4 – 5
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Example

0[0, 10]

1

[3, 10]

2

[0, 10]

3

[0, 6]

4
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5 [0, 10]
vsource vsink

2

3

4

1

2

1

3

22
1

1

S0,r = 0

S1,r = 2 + 1 = 3

S2,r = 5

S3,r = 6

S4,r = 8

Path 1: 0 – 1 – 3 – 5 (Infeasible)
Path 2: 0 – 2 – 4 – 3 – 2 – 4 – 5 (Feasible)
Path 3: 0 – 1 – 2 – 3 – 5
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Example

0[0, 10]

1

[3, 10]

2

[0, 10]

3

[0, 6]

4

[0, 10]

5 [0, 10]
vsource vsink

2

3

4

1

2

1

3

22
1

1

Path 1: 0 – 1 – 3 – 5 (Infeasible)
Path 2: 0 – 2 – 4 – 3 – 2 – 4 – 5 (Feasible)
Path 3: 0 – 1 – 2 – 3 – 5 (Feasible)
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Main vs Secondary resources

Set Rk is partitioned (by the modeler) into main resources Rk
M

and secondary resources Rk
N

Main resources (Rk
M)

It is mandatory the existence of at least one main resource.
Maximum number of main resources: 2

Consumptions should be non-negative

Cycles with zero consumption on all main resources should
not exist

The main resources make sure that sets Pk are finite, by
preventing the infinite repetition of a subpath
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Additional resource features

Disposable vs Non-disposable resources

Disposable (default): it is possible to drop resource in order
to satisfy the lower limit on accumulated consumption

Non-disposable: it is not possible to drop resources

Defining resources as non-disposable make the RCSP much harder
and should be avoided unless it is really needed for the model

Binary resources

All consumptions are 1, 0 or -1, all intervals are [0,0], [0,1] or [1,1].

Special implementation in bitsets

SPOC20 – School on Advanced BCP Tools – Paris A Generic Exact Solver for VRP



Basic Model: Variables and Mappings

After defining the graphs, define continuous and/or integer
variables:

1 Mapped x variables

Each variable xj , 1 ≤ j ≤ n1, is mapped into a non-empty set
M(xj) ⊆ A.
The inverse mapping of arc a is M−1(a) = {j |a ∈ M(xj)}.
Some M−1 sets may be empty.

2 Additional (non-mapped) y variables

Mapping

A “non-standard” concept used in VRPSolver to link the Master
problem to the subproblems.
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Basic Model: Variables and Mappings

Mapping xj , 1 ≤ j ≤ 4 (n1 = 4), variables

0

1

2

3

4

5
vsource vsink

x1, x2

x1

x2, x3

x4

x4

x2

M(x1) = {(0, 1), (0, 2)},M(x2) = {(0, 1), (1, 2), (2, 4)},
M(x3) = {(2, 4)},M(x4) = {(3, 5), (4, 5)}.

M−1((0, 1)) = {x1, x2},M−1((1, 3)) = {∅},
M−1((2, 4)) = {x2, x3}, . . . ,M−1((4, 5)) = {x4}.
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Basic Model: Formulation

hpa (constant): how many times arc a is used in path p
λp (variable): how many times path p is used in the solution
Lk ,Uk : given bounds on the number of paths from each graph

Min
n1∑
j=1

cjxj +
n2∑
s=1

fsys (12a)

S.t.
n1∑
j=1

αijxj +
n2∑
s=1

βisys ≥ di , i = 1, . . . ,m, (12b)

xj =
∑
k∈K

∑
p∈Pk

( ∑
a∈M(xj )

hpa

)
λp, j = 1 . . . , n1, (12c)

Lk ≤
∑

p∈Pk

λp ≤ Uk , k ∈ K , (12d)

λp ∈ Z+, p ∈ P, (12e)

xj ∈ Z+, ys ∈ Z+ j = 1, . . . , n̄1, s = 1, . . . , n̄2.
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Basic Model: Formulation

Eliminating the x variables and relaxing the integrality constraints:

Min
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

cj
∑

a∈M(xj )

hpa

)
λp +

n2∑
s=1

fsys (13a)

S.t.
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

αij
∑

a∈M(xj )

hpa

)
λp

+
n2∑
s=1

βisys ≥ di , i = 1, . . . ,m,(13b)

Lk ≤
∑

p∈Pk

λp ≤ Uk , k ∈ K , (13c)

λp ≥ 0, p ∈ P. (13d)
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Basic Model: Formulation

Eliminating the x variables and relaxing the integrality constraints:

Min
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

cj
∑

a∈M(xj )

hpa

)
λp +

n2∑
s=1

fsys (13a)

S.t.
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

αij
∑

a∈M(xj )

hpa

)
λp

+
n2∑
s=1

βisys ≥ di , i = 1, . . . ,m,(13b)

Lk ≤
∑

p∈Pk

λp ≤ Uk , k ∈ K , (13c)

λp ≥ 0, p ∈ P. (13d)

Master LP (13) is solved by column generation
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Basic Model: Formulation

Let πi , 1 ≤ i ≤ m, be the dual variables of Constraints (13b), νk+
and νk−, k ∈ K , the dual variables of Constraints (13c).

The reduced cost of an arc a ∈ A is:

c̄a =
∑

j∈M−1(a)

cj −
m∑
i=1

∑
j∈M−1(a)

αijπi .

The reduced cost of a path p ∈ Pk is:

c̄(p) =
n∑

j=1

c̄aj − ν
k
+ − νk−.

So, the pricing subproblems correspond to finding, for each k ∈ K ,
a path p ∈ Pk with minimum reduced cost.
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Example: CVRP Model: Graph

Single graph

G = (V ,A), A = {(i , j), (j , i) : {i , j} ∈ E}, vsource = vsink = 0;
R = RM = {1}; qa,1 = (di + dj)/2, a = (i , j) ∈ A (define d0 = 0);
li ,1 = 0, ui ,1 = Q, i ∈ V ;

0vsource
vsink

1

d1 = 16

2

d2 = 18

3

d3 = 1

4

d4 = 13
5 d5 = 8

0.
5

8

8.5

17

1
2

14.
5

7.
5

10.5

13

9.5

4

15.5

7

4.5

9

Q = 30
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Example: CVRP Model: Formulation + Mapping

Integer variables xe , e ∈ E .

Min
∑
e∈E

cexe (14a)

S.t.
∑

e∈δ(i)

xe = 2, i ∈ V+. (14b)

L = 0, U = n; M(xe) = {(i , j), (j , i)}, e = {i , j} ∈ E .

0 1
2

3

4

5

x 03

x01

x
13

x12

x
1

5

x14

x 0
4

x45

x 25
x23

x
05

x24

x 34

x
35

x02
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Example: Set of Paths

In this small CVRP example there are 18 paths (only counting
elementary ones and only taking the cheapest path among those
that visit the same customers)

λ1: 0 −→ 3 −→ 0

λ2: 0 −→ 3 −→ 2 −→ 5 −→ 0

λ3: 0 −→ 2 −→ 5 −→ 0

λ4: 0 −→ 4 −→ 5 −→ 3 −→ 0

λ5: 0 −→ 3 −→ 2 −→ 0

λ6: 0 −→ 5 −→ 1 −→ 3 −→ 0

λ7: 0 −→ 1 −→ 3 −→ 4 −→ 0

λ8: 0 −→ 5 −→ 3 −→ 0

λ9: 0 −→ 4 −→ 5 −→ 0

λ10: 0 −→ 2 −→ 0

λ11: 0 −→ 4 −→ 1 −→ 3 −→ 0

λ12: 0 −→ 5 −→ 1 −→ 0

λ13: 0 −→ 3 −→ 4 −→ 0

λ14: 0 −→ 4 −→ 1 −→ 0

λ15: 0 −→ 5 −→ 0

λ16: 0 −→ 4 −→ 0

λ17: 0 −→ 3 −→ 1 −→ 0

λ18: 0 −→ 1 −→ 0
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Example: Resulting Complete MIP Formulation

Min 21x01 + 58x02 + 17x03 + 33x04 + 49x05 + 37x12 + 19x13 + ...

S.t. x01 + x12 + x13 + x14 + x15 = 2,

x02 + x12 + x23 + x24 + x25 = 2,

x03 + x13 + x23 + x34 + x35 = 2,

x04 + x14 + x24 + x34 + x45 = 2,

x05 + x15 + x25 + x35 + x45 = 2,

x01 = λ7 + λ12 + λ14 + λ17 + 2λ18,

x02 = λ3 + λ5 + 2λ10,

...

x45 = λ4 + λ9,

0 ≤ λ1 + λ2 + λ3 + · · ·+ λ18 ≤ 5,

λ ∈ Z+
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Substituting the x variables and relaxing integrality

Min 34λ1 + 166λ2 + 154λ3 + 149λ4 + 128λ5 + 126λ6 + 124λ7 +

124λ8 + 123λ9 + 116λ10 + 114λ11 + 111λ12 + 101λ13 + 99λ14 +

98λ15 + 66λ16 + 57λ17 + 42λ18

S.t. 2λ6 + 2λ7 + 2λ11 + 2λ12 + 2λ14 + 2λ17 + 2λ18 = 2

2λ2 + 2λ3 + 2λ5 + 2λ10 = 2

2λ1 + 2λ2 + 2λ4 + 2λ5 + 2λ6 + 2λ7 + 2λ8 + 2λ11 + 2λ13 + 2λ17 = 2

2λ4 + 2λ7 + 2λ9 + 2λ11 + 2λ13 + 2λ14 + 2λ16 = 2

2λ2 + 2λ3 + 2λ4 + 2λ6 + 2λ8 + 2λ9 + 2λ12 + 2λ15 = 2

0 ≤ λ1 + λ2 + λ3 + · · ·+ λ18 ≤ 5,

λ ≥ 0

Equivalent to the classic Set Partitioning Formulation. Column
generation is performed having a Resource Constrained Shortest
Path in the defined graph as pricing subproblem.
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Including Advanced

Elements: Packing Sets
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Collection of Packing Sets (arc version)

Let B ⊂ 2A be a collection of mutually disjoint subsets of A such
that the constraints:∑

a∈B

∑
p∈P

hpaλp ≤ 1, B ∈ B, (15)

are satisfied by at least one optimal solution. In those conditions,
we say that the elements of B are packing sets.

Packing sets generalize customers in the classical VRP variants,
that can only be visited once

The definition of a proper B is part of the modeling
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Collection of Packing Sets (vertex version)

In many cases it is more natural to define packing sets on vertices.
Let BV ⊂ 2V be a collection of mutually disjoint subsets of V such
that the constraints:∑

p∈P

(∑
v∈B

hpv

)
λp ≤ 1, B ∈ BV ,

are satisfied by at least one optimal solution. In those conditions,
we say that the elements of BV are packing sets on vertices.

Packing sets generalize customers in the classical VRP variants,
that can only be visited once

The definition of a proper BV is part of the modeling
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Generalizing ng-routes

The ng-routes (Baldacci et al. [2011a]) obtain a good compromise
between bound quality and pricing difficulty.

Generalized ng-paths

For each arc a ∈ A, let NG (a) ⊆ B denote the ng -set of a. An
ng -path may visit a given packing set B a second time only after
passing by an arc a such that B /∈ NG (a).

SPOC20 – School on Advanced BCP Tools – Paris A Generic Exact Solver for VRP



Generalizing Limited Memory Rank-1 Cuts

The Rank-1 Cuts (R1Cs) (Pecin et al. [2017c], Bulhoes et al. [2018a])
are a generalization of the Subset Row Cuts by Jepsen et al. [2008].
They are further generalized as follows.

Given non-negative multipliers ρB for each B ∈ B, a
Chvátal-Gomory rounding of Constraints (59) yields:

∑
p∈P

⌊∑
B∈B

ρB
∑
a∈B

hpa

⌋
λp ≤

⌊∑
B∈B

ρB

⌋
. (16)

Limited-memory avoids excessive impact in the pricing
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Generalizing Path Enumeration

If gaps are sufficiently small, all paths without more than one arc
in the same packing set can be enumerated to a pool, that is used
to perform pricing by inspection.

Generalizes Baldacci et al. [2008] and Contardo and Martinelli [2014b].
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Some Modeling Examples
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Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

Undirected graph G ′ = (V ,E ), V = {0, . . . , n}, 0 is the
depot, V+ = {1, . . . , n} are the customers; positive demand
di , i ∈ V+; set of vehicle types K = {1, . . . ,m}; number of
available vehicles uk , k ∈ K ; edge costs cke , e ∈ E , k ∈ K ;
vehicle type capacity Qk , k ∈ K .

Find a minimum cost set of routes visiting all customers and
such that the sum of the demands of the customers in a route
does not exceed its vehicle type capacity. The number of
routes for a vehicle type should not exceed its availability.
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VRPSolver Model for Heterogeneous Fleet Vehicle Routing
Problem (HFVRP)

Graphs G k

G k = (V k ,Ak), V k = {vk0 , . . . , vkn },
Ak = {(vki , vkj ), (vkj , v

k
i ) : {i , j} ∈ E};

vksource = vksink = vk0 , k ∈ K ;
Rk = Rk

M = {rk};
qa,1 = (di + dj)/2, a = (vki , v

k
j ) ∈ Ak , k ∈ K (define d0 = 0);

lvk
i ,r

k = 0, uvk
i ,r

k = Qk , vki ∈ V k , k ∈ K .

Those graphs only differ by the value of Qk , even if the costs are
vehicle-dependent.
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VRPSolver Model for Heterogeneous Fleet Vehicle Routing
Problem (HFVRP)

Integer variables xke , e ∈ E , k ∈ K - how many times edge e is
used in a route of a type k vehicle.

0

1

2

3

4

5

6

7

89

x2
e = 1

x2
e = 1

x2
e = 1

x2
e = 2

x1
e = 1

x1
e = 1

x1
e = 1

x1
e = 1

x3
e = 1

x3
e = 1

x3
e = 1

x3
e = 1

SPOC20 – School on Advanced BCP Tools – Paris A Generic Exact Solver for VRP



VRPSolver Model for Heterogeneous Fleet Vehicle Routing
Problem (HFVRP)

Formulation + Mapping

Integer variables xke , e ∈ E , k ∈ K .

Min
∑

k∈K
∑

e∈E cke x
k
e (17a)

S.t.
∑

k∈K
∑

e∈δ(i) x
k
e = 2, i ∈ V+; (17b)

Lk = 0, Uk = uk ; M(xke ) = {(vki , vkj ), (vkj , v
k
i )}, e = {i , j} ∈ E ,

k ∈ K .

Packing Sets

BV = ∪i∈V+{{vki : k ∈ K}}
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VRPSolver Model for Heterogeneous Fleet Vehicle Routing
Problem (HFVRP)

Min
∑
k∈K

∑
e∈E

cke x
k
e (18a)

S.t.
∑
k∈K

∑
e∈δ(i)

xke = 2, i ∈ V+; (18b)

xke =
∑

p∈Pk

hpeλp, e ∈ E , k ∈ K ; (18c)

0 ≤
∑

p∈Pk

λp ≤ uk , k ∈ K ; (18d)

λp ∈ Z+, p ∈ P; (18e)

xke ∈ Z+, e ∈ E , k ∈ K . (18f)

hpe = how many times edge e is used in p
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Team Orienteering Problem (TOP)

Directed graph G = (V ,A), V = {0, . . . , n + 1}, 0 and n + 1
are the initial and final depots, respectively, V+ = {1, . . . , n}
are the customers; positive travel time ta, a ∈ A; profit pi ,
i ∈ V+; maximum route duration T ; and fleet size F .

Find a set of at most F routes, each one starting at 0, ending
at n + 1 and not exceeding the maximum route duration, that
visit each customer at most once and maximize the total
profit of the visited customers.
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Team Orienteering Problem (TOP)

just to align
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Route duration: T = 10

Fleet size: F = 3

Number of customers:
n = 10
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Team Orienteering Problem (TOP)

Some feasible paths just to align
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Route duration: T = 10

Fleet size: F = 3

Number of customers:
n = 10
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Team Orienteering Problem (TOP)

Some feasible paths just to align
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VRPSolver Model for Team Orienteering Problem (TOP)

Single graph

G = (V ,A); vsource = 0, vsink = n + 1; R = RM = {1}; qa,1 = ta,
a = (i , j) ∈ A; li ,1 = 0, ui ,1 = T , i ∈ V .

Formulation + Mapping

Integer variables xa, a ∈ A and binary variables yi , i ∈ V+. The y
variables, that indicate which customers are visited, are not
mapped to any arc.

Min −
∑

i∈V+
piyi (19a)

S.t.
∑

a∈δ−(i) xa = yi , i ∈ V+; (19b)

L = 0, U = F ; M(xa) = {a}, a ∈ A;

Packing Sets

BV = ∪i∈V+{{i}}
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VRPSolver Model for Team Orienteering Problem (TOP)

Min −
∑

i∈V+

piyi (20a)

S.t.
∑

a∈δ−(i)

xa = yi , i ∈ V+; (20b)

xa =
∑
p∈P

hp
aλp, a ∈ A; (20c)

0 ≤
∑
p∈P

λp ≤ F , (20d)

λ, x ∈ Z+, (20e)

0 ≤ y ≤ 1. (20f)

Substituting x and relaxing the integrality:

Min −
∑

i∈V+

piyi (21a)

S.t.
∑
p∈P

( ∑
a∈δ−(i)

hp
a

)
λp = yi , i ∈ V+; (21b)

0 ≤
∑
p∈P

λp ≤ F , (21c)

λ ≥ 0. (21d)

0 ≤ y ≤ 1. (21e)
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Computational

Results
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Computational Experiments

Solver optimization algorithms coded in C++ over BaPCod
package (Vanderbeck et al. [2018])

IBM CPLEX 12.9 used as LP solver

Experiments on Xeon E5-2680 v3 2.50 GHz processors

Models are defined using either a C++ interface or a
Julia–JuMP (Dunning et al. [2017]) based interface.

Tests over 13 problems: CVRP, VRPTW, HFVRP, Multi-Depot
VRP (MDVRP), (Capacitated) Team Orienteering Problem
(CTOP/TOP), Capacitated Profitable Tour Problem (CPTP),
VRP with Service Level constraints (VRPSL), GAP, Vector
Packing Problem (VPP), Bin Packing Problem (BPP) and CARP.
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Computational results

Problem Data set # T.L. Gen. BCP Best Published 2nd Best Published
CVRP E-M 12 10h 12 (61s) 12 (49s) Pecin et al. [2017b] 10 (432s) Contardo et al. [2014]

X 58 60h 36 (147m) 34 (209m) Uchoa et al. [2017] —

VRPTW Sol Hard 14 1h 14 (5m) 13 (17m) Pecin et al. [2017a] 9 (39m) Baldacci et al. [2011a]
Hom 200 60 30h 56 (21m) 50 (70m) Pecin et al. [2017a] 7 (-) Kallehauge et al. [2006]

HFVRP Golden 40 1h 40 (144s) 39 (287s) Pessoa et al. [2018] 34 (855s) Baldacci et al. [2009]

MDVRP Cordeau 11 1h 11 (6m) 11 (7m) Pessoa et al. [2018] 9 (25m) Contardo et al. [2014]

PDPTW RC 40 1h 40 (5m) 33 (17m) Gschwind et al. [2018] 32 (14m) Baldacci et al. [2011b]
LiLim 30 1h 3 (56m) 23 (20m) Baldacci et al. [2011b] 18 (27m) Gschwind et al. [2018]

TOP Chao 4 60 1h 55 (8m) 39 (15m) Bianchessi et al. [2018] 30 (-) El-Hajj et al. [2016]

CTOP Archetti 14 1h 13 (7m) 7 (34m) Archetti et al. [2013] 6 (35m) Archetti et al. [2009]

CPTP Archetti 28 1h 24 (9m) 0 (1h) Bulhoes et al. [2018b] 0 (1h) Archetti et al. [2013]

VRPSL Bulhoes 180 2h 159 (16m) 49 (90m) Bulhoes et al. [2018b] —

GAP OR-Lib D 6 2h 5 (40m) 5 (30m) Posta et al. [2012] 5 (46m) Avella et al. [2010]
Nauss 30 1h 25 (23m) 1 (58m) Gurobi [2017] 0 (1h) Nauss [2003]

VPP 1,4,5,9 40 1h 38 (8m) 13 (50m) Heßler et al. [2018] 10 (53m) Brandão et al. [2016]

BPP Falk T 80 10m 80 (16s) 80 (1s) Brandão et al. [2016] 80 (24s) Belov et al. [2006,16]
Hard28 28 10m 28 (17s) 28 (7s) Belov et al. [2006,16] 26 (14s) Brandão et al. [2016]
AI 250 1h 160 (25m) 116 (35m) Belov et al. [2006,16] 100 (40m) Brandão et al. [2016]
ANI 250 1h 103 (35m) 97 (40m) Wei et al. [2019] 67 (45m) Belov et al. [2006,16]

CARP Eglese 24 30h 22 (36m) 22 (43m) Pecin et al. [2019] 10 (237m) Bartolini et al. [2013]

Table: Generic solver vs best specific solvers on 13 problems.
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Additional Experiments on Some unsolved CVRP instances

Instance Prev. BKS Root LB Nodes Total Time OPT

X-n284-k15 20226 20168 940 11.0 days 20215
X-n322-k28 29834 29731 1197 5.6 days 29834
X-n344-k43 42056 41939 2791 11.6 days 42050
X-n393-k38 38260 38194 1331 5.8 days 38260
X-n469-k138 221909 221585 8964 15.2 days 221824
X-n548-k50 86701 86650 337 2.0 days 86700

Long runs, parameters calibrated per instance
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Downloading and

using the VRP Solver
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VRPSolver available over Julia–JuMP

Available for academic use (vrpsolver.math.u-bordeaux.fr):

Algorithms are bundled in a single pre-compiled docker

Julia–JuMP user interface for modeling (open source),
including several demos
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Modeling on VRPSolver

1 Modeling a typical VRP variant requires less than 100 lines of
Julia/JuMP code (not counting input/output). A user can
build a working solver for a new variant in 1 day

2 Computer experiments for parameter tuning may be required
for a better performance

3 Separation routines for problem specific cuts may be needed
for less standard VRP variants. Examples where sophisticated
specific cuts had to be devised for good performance:

Location-Routing Problem (Liguori et al. [2019])
Two-echelon CVRP (Marques et al. [2019])

4 VRPSolver has a built-in diving primal heuristic (Sadykov et al.

[2018]). But it does not always work well. In those cases, a
good performance depends on having some heuristic for
providing external upper bounds.
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Room for Creative Modeling

We believe users may find original ways (transformations) of fitting
new problems in the proposed model

Not only VRP variants, possibly also problems from
scheduling, network design, etc.

Since VRP solving technology is quite advanced, there is a chance
of obtaining better-than-existing-methods performance
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Conclusions
and Perspectives
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Future of VRPSolver −→ Coluna

It is expected that future versions of VRPSolver will be built on
top of Coluna (https://github.com/atoptima/Coluna.jl), an open
source collaborative framework for branch-cut-and-price
algorithms, coded in Julia, that is under development.

No changes in VRPSolver user interface

Migration will happen when Coluna has sufficient performance
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VRP solvers

As expected from the economic importance of routing, there are
scores of commercial and proprietary VRP solvers. The vast
majority of them are based on heuristics.

There are also several free heuristics VRP solvers that can handle a
significant number of variants, including:

Google OR-Tools

VRP Spreadsheet Solver (Güneş Erdoğan)

LKH (Keld Helsgaun)

OptaPlanner

VROOM

JSprit
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Impact of Exact Algorithms in Practical VRP

Historically, exact solvers were rarely directly used in practical
routing

1 Existing algorithms could not solve realistic-sized instances in
reasonable times

Now most instances of the most classic VRPs with up to 200
customers can be solved
More importantly, instances with up to 100 customers can
often be solved in a few minutes

2 The real problems seldom correspond exactly to one of the
classic variants. Creating a good exact code for a new variant
is a very hard task

Customizable codes with state-of-the-art performance will start
to be available

We expect that exact algorithms will be much more used by
VRP practitioners
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Impact of Exact Algorithms in Practical VRP

However, exact solvers also have significant indirect practical
impact:

1 Benchmarking heuristics

Knowing the optimal solution values for some instances with
200 costumers (even if it takes days to find them) allows for a
much better assessment of the quality of a heuristic
Remark that if your real problem is slightly different from
those already studied in academy, it is not possible to obtain
solution values from the literature

2 Improving heuristics

The actual optimal solutions may give precious hints on how
to improve, say, a local search algorithm.
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Thank you
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Teobaldo Bulhoes, Minh Hoàng Hà, Rafael Martinelli, and Thibaut
Vidal. The vehicle routing problem with service level constraints.
European Journal of Operational Research, 265(2):544 – 558,
2018b.

SPOC20 – School on Advanced BCP Tools – Paris A Generic Exact Solver for VRP



C. Contardo and R. Martinelli. A new exact algorithm for the
multi-depot vehicle routing problem under capacity and route
length constraints. Discrete Optimization, 12:129–146, 2014a.

Claudio Contardo and Rafael Martinelli. A new exact algorithm for
the multi-depot vehicle routing problem under capacity and route
length constraints. Discrete Optimization, 12:129–146, 2014b.

L. Costa, C. Contardo, and G. Desaulniers. Exact
branch-price-and-cut algorithms for vehicle routing.
Transportation Science, 53:946–985, 2019.

G. Dantzig and R. Ramser. The truck dispatching problem.
Management Science, 6:80–91, 1959.

G. Desaulniers, J. Desrosiers, I. loachim, M. Solomon, F. Soumis,
and D. Villeneuve. A unified framework for deterministic time
constrained vehicle routing and crew scheduling problems. In
Fleet management and logistics, pages 57–93. Springer, 1998.

SPOC20 – School on Advanced BCP Tools – Paris A Generic Exact Solver for VRP



Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling
language for mathematical optimization. SIAM Review, 59(2):
295–320, 2017.

Racha El-Hajj, Duc-Cuong Dang, and Aziz Moukrim. Solving the
team orienteering problem with cutting planes. Computers &
Operations Research, 74:21 – 30, 2016.

R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi, M. Reis, E. Uchoa,
and R.F. Werneck. Robust branch-and-cut-and-price for the
capacitated vehicle routing problem. Mathematical
Programming, 106:491–511, 2006.

Timo Gschwind, Stefan Irnich, Ann-Kathrin Rothenbächer, and
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